48
Views
96
CrossRef citations to date
0
Altmetric
Gene Expression

Spliceosomal U snRNP Core Assembly: Sm Proteins Assemble onto an Sm Site RNA Nonanucleotide in a Specific and Thermodynamically Stable Manner

, , &
Pages 6554-6565 | Received 10 May 1999, Accepted 09 Jul 1999, Published online: 28 Mar 2023

REFERENCES

  • Branlant, C., A. Krol, J. P. Ebel, E. Lazar, B. Haendler, and J. Jacob 1982. U2 RNA shares a structural domain with U1, U4, and U5 RNAs. EMBO J. 1:1259–1265.
  • Cooper, M., L. H. Johnston, and J. Beggs 1995. Identification and characterization of Uss1p (Sdb23p): a novel U6 snRNA-associated protein with significant similarity to core proteins of small nuclear ribonucleoproteins. EMBO J. 14:2066–2075.
  • Fischer, U., Q. Liu, and J. Dreyfuss 1997. The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90:1023–1029.
  • Fischer, U., and J. Lührmann 1990. An essential signaling role for the m3G cap in the transport of U1 snRNP to the nucleus. Science 249:786–790.
  • Fischer, U., V. Sumpter, M. Sekine, T. Satoh, and J. Lührmann 1993. Nucleocytoplasmic transport of U snRNPs: definition of a nuclear location signal in the Sm core domain that binds a transport receptor independently of the m3G cap. EMBO J. 12:573–583.
  • Fisher, D. E., G. E. Conner, W. H. Reeves, R. Wisniewolski, and J. Blobel 1985. Small nuclear ribonucleoprotein particle assembly in vivo: demonstration of a 6S RNA-free core precursor and posttranslational modification. Cell 42:751–758.
  • Fried, M., and J. Crothers 1981. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9:6505–6525.
  • Fury, M., J. Andersen, P. Ponda, R. Aimes, and J. Zieve 1999. Thirteen anti-Sm monoclonal antibodies immunoprecipitate the three cytoplasmic snRNP core protein precursors in six distinct subsets. J. Autoimmunity 12:91–100.
  • Grimm, C., E. Lund, and J. Dahlberg 1997. In vivo selection of RNAs that localize in the nucleus. EMBO J. 16:793–806.
  • Grimm, C., B. Stefanovic, and J. Schümperli 1993. The low abundance of U7 snRNA is partly determined by its Sm binding site. EMBO J. 12:1229–1238.
  • Hamm, J., E. Darzynkiewicz, S. M. Tahara, and J. Mattaj 1990. The trimethylguanosine cap structure of U1 snRNA is a component of a bipartite nuclear targeting signal. Cell 62:569–577.
  • Hamm, J., M. Kazmaier, and J. Mattaj 1987. In vitro assembly of U1 snRNPs. EMBO J. 6:3479–3485.
  • Handa, N., O. Nureki, K. Kurimoto, I. Kim, H. Sakamoto, Y. Shimura, Y. Muto, and J. Yokoyama 1999. Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature 398:579–585.
  • Hartmuth, K., V. A. Raker, J. Huber, C. Branlant, and J. Lührmann 1999. An unusual chemical reactivity of Sm site adenosines strongly correlates with proper assembly of core U snRNP particles. J. Mol. Biol. 285:133–147.
  • Heinrichs, V., W. Hackl, and J. Lührmann 1992. Direct binding of small nuclear ribonucleoprotein G to the Sm site of small nuclear RNA. Ultraviolet light cross-linking of protein G to the AAU stretch within the Sm site (AAUUUGUGG) of U1 small nuclear ribonucleoprotein reconstituted in vitro. J. Mol. Biol. 227:15–28.
  • Hermann, H., P. Fabrizio, V. A. Raker, K. Foulaki, H. Hornig, H. Brahms, and J. Lührmann 1995. snRNP Sm proteins share two evolutionarily conserved sequence motifs which are involved in Sm protein-protein interactions. EMBO J. 14:2076–2088.
  • Hu, J., D. Xu, K. Schappert, Y. Xu, and J. Friesen 1995. Mutational analysis of Saccharomyces cerevisiae U4 small nuclear RNA identifies functionally important domains. Mol. Cell. Biol. 15:1274–1285.
  • Huber, J., U. Cronshagen, M. Kadokura, C. Marshallsay, T. Wada, M. Sekine, and J. Lührmann 1998. Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J. 17:4114–4126.
  • Jarmolowski, A., and J. Mattaj 1993. The determinants for Sm protein binding to Xenopus U1 and U5 snRNAs are complex and non-identical. EMBO J. 12:223–232.
  • Jones, M. H., and J. Guthrie 1990. Unexpected flexibility in an evolutionarily conserved protein-RNA interaction: genetic analysis of the Sm binding site. EMBO J. 9:2555–2561.
  • Kambach, C., S. Walke, R. Young, J. M. Avis, E. de la Fortelle, V. A. Raker, R. Lührmann, J. Li, and J. Nagai 1999. Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 96:375–387.
  • Kastner, B., M. Bach, and J. Lührmann 1990. Electron microscopy of small nuclear ribonucleoprotein (snRNP) particles U2 and U5: evidence for a common structure-determining principle in the major U snRNP family. Proc. Natl. Acad. Sci. USA 87:1710–1714.
  • Lefebvre, S., L. Burglen, S. C. Reboullet, O., P. Burlet, L. Viollet, B. Benichou, C. Cruaud, P. Millasseau, and J. Zeviani 1995. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165.
  • Lehmeier, T., K. Foulaki, and J. Lührmann 1990. Evidence for three distinct D proteins, which react differentially with anti-Sm autoantibodies, in the cores of the major snRNPs U1, U2, U4/U6 and U5. Nucleic Acids Res. 18:6475–6484.
  • Lehmeier, T., V. A. Raker, H. Hermann, and J. Lührmann 1994. cDNA cloning of the Sm proteins D2 and D3 from human small nuclear ribonucleoproteins: evidence for a direct D1-D2 interaction. Proc. Natl. Acad. Sci. USA 91:12317–12321.
  • Lerner, M. R., and J. Steitz 1979. Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA 76:5495–5499.
  • Liautard, J. P., J. Sri-Widada, C. Brunel, and J. Jeanteur 1982. Structural organization of ribonucleoproteins containing small nuclear RNAs from HeLa cells. Proteins interact closely with a similar structural domain of U1, U2, U4 and U5 small nuclear RNAs. J. Mol. Biol. 162:623–643.
  • Liu, Q., U. Fischer, F. Wang, and J. Dreyfuss 1997. The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 90:1013–1021.
  • Madore, S. J., E. D. Wieben, and J. Pederson 1984. Intracellular site of U1 small nuclear RNA processing and ribonucleoprotein assembly. J. Cell Biol. 98:188–192.
  • Mattaj, I. W. 1986. Cap trimethylation of U snRNA is cytoplasmic and dependent on U snRNP protein binding. Cell 46:905–911.
  • Mattaj, I. W., and J. De Robertis 1985. Nuclear segregation of U2 snRNA requires binding of specific snRNP proteins. Cell 40:111–118.
  • Nelissen, R. L., C. L. Will, W. J. van Venrooij, and J. Lührmann 1994. The association of the U1-specific 70K and C proteins with U1 snRNPs is mediated in part by common U snRNP proteins. EMBO J. 13:4113–4125.
  • Neuman de Vegvar, H. E., and J. Dahlberg 1990. Nucleocytoplasmic transport and processing of small nuclear RNA precursors. Mol. Cell. Biol. 10:3365–3375.
  • Plessel, G., U. Fischer, and J. Lührmann 1994. m3G cap hypermethylation of U1 small nuclear ribonucleoprotein (snRNP) in vitro: Evidence that the U1 small nuclear RNA-(guanosine-N2)-methyltransferase is a non-snRNP cytoplasmic protein that requires a binding site on the Sm core domain. Mol. Cell. Biol. 14:4160–4172.
  • Plessel, G., R. Lührmann, and J. Kastner 1997. Electron microscopy of assembly intermediates of the snRNP core: morphological similarities between the RNA-free (E.F.G) protein heteromer and the intact snRNP core. J. Mol. Biol. 265:87–94.
  • Raker, V. A., G. Plessel, and J. Lührmann 1996. The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J. 15:2256–2269.
  • Reddy, R., and J. Bush 1983. Small nuclear RNAs and RNA processing. Prog. Nucleic Acid Res. Mol. Biol. 30:127–162.
  • Sauterer, R. A., A. Goyal, and J. Zieve 1990. Cytoplasmic assembly of small nuclear ribonucleoprotein particles from 6 S and 20 S RNA-free intermediates in L929 mouse fibroblasts. J. Biol. Chem. 265:1048–1058.
  • Ségault, V., C. L. Will, B. S. Sproat, and J. Lührmann 1995. In vitro reconstitution of mammalian U2 and U5 snRNPs active in splicing: Sm proteins are functionally interchangeable and are essential for the formation of functional U2 and U5 snRNPs. EMBO J. 14:4010–4021.
  • Séraphin, B. 1995. Sm and Sm-like proteins belong to a large family: identification of proteins of the U6 as well as the U1, U2, U4 and U5 snRNPs. EMBO J. 14:2089–2098.
  • Sumpter, V., A. Kahrs, U. Fischer, U. Kornstädt, and J. Lührmann 1992. In vitro reconstitution of U1 and U2 snRNPs from isolated proteins and snRNA. Mol. Biol. Rep. 16:229–240.
  • Van Dam, A., I. Winkel, J. Zijlstra-Baalbergen, R. Smeenk, and J. Cuypers 1989. Cloned human snRNP proteins B and B′ differ only in their carboxyl-terminal part. EMBO J. 8:3853–3860.
  • Will, C. L., and J. Lührmann 1997. Protein functions in pre-mRNA splicing. Curr. Opin. Cell Biol. 9:320–328.
  • Yang, H., M. L. Moss, E. Lund, and J. Dahlberg 1992. Nuclear processing of the 3′-terminal nucleotides of pre-U1 RNA in Xenopus laevis oocytes. Mol. Cell. Biol. 12:1553–1560.
  • Yu, Y.-T., E. C. Scharl, C. M. Smith, J. A. Steitz 1999. The growing world of small nuclear ribonucleoproteins, p. 487–524 In R. F. Gesteland, T. R. Cech, J. F. Aktins (ed.), The RNA World, 2nd ed. Cold Spring Harbor, New York.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.