8
Views
35
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Cytomegalovirus IE2 Protein Stimulates Interleukin 1β Gene Transcription via Tethering to Spi-1/PU.1

, , , , , , & show all
Pages 6803-6814 | Received 23 Mar 1999, Accepted 28 Jul 1999, Published online: 28 Mar 2023

REFERENCES

  • Bassuk, A. G., and J. Leiden 1995. A direct physical association between ETS and AP-1 transcription factors in normal human T cells. Immunity 3:223–237.
  • Behre, G., A. J. Whitmarsh, M. P. Coghlan, T. Hoang, C. L. Carpenter, D. E. Zhang, R. J. Davis, and J. Tenen 1999. c-Jun is a JNK-independent coactivator of the PU.1 transcription factor. J. Biol. Chem. 274:4939–4946.
  • Biegalke, B. J., and J. Geballe 1991. Sequence requirements for activation of the HIV-1 LTR by human cytomegalovirus. Virology 183:381–385.
  • Boldogh, I., S. AbuBakar, and J. Albrecht 1990. Activation of protooncogenes: an immediate early event in human cytomegalovirus infection. Science 247:561–564.
  • Caswell, R., C. Hagemeier, C. J. Chiou, G. Hayward, T. Kouzarides, and J. Sinclair 1993. The human cytomegalovirus 86K immediate early (IE) 2 protein requires the basic region of the TATA-box binding protein (TBP) for binding, and interacts with TBP and transcription factor TFIIB via regions of IE2 required for transcriptional regulation. J. Gen. Virol. 74:2691–2698.
  • Cherrington, J. M., and J. Mocarski 1989. Human cytomegalovirus ie1 transactivates the α promoter-enhancer via an 18-base-pair repeat element. J. Virol. 63:1435–1440.
  • Chittenden, T., D. M. Livingston, W. G. Kaelin Jr.. 1991. The T/E1A-binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA-binding protein. Cell 65:1073–1082.
  • Clark, B. D., M. J. Fenton, H. L. Rey, A. C. Webb, P. E. Auron 1988. Characterization of cis and trans acting elements involved in human proIL-1 beta gene expression, p. 47–53. In M. C. Powanda, J. J. Oppenheim, M. J. Kluger, C. Denarello (ed.), Monokines and other non-lymphocytic cytokines. Alan R. Liss, New York, N.Y.
  • Clark, K. L., E. D. Halay, E. Lai, and J. Burley 1993. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364:412–420.
  • Craigen, J. L., K. L. Yong, N. J. Jordan, L. P. MacCormac, J. Westwick, A. N. Akbar, and J. Grundy 1997. Human cytomegalovirus infection up-regulates interleukin-8 gene expression and stimulates neutrophil transendothelial migration. Immunology 92:138–145.
  • Crump, J. W., L. J. Geist, P. E. Auron, A. C. Webb, M. F. Stinski, and J. Hunninghake 1992. The immediate early genes of human cytomegalovirus require only proximal promoter elements to upregulate expression of interleukin-1 beta. Am. J. Respir. Cell Mol. Biol. 6:674–677.
  • Dudding, L., S. Haskill, B. D. Clark, P. E. Auron, S. Sporn, and J. Huang 1989. Cytomegalovirus infection stimulates expression of monocyte-associated mediator genes. J. Immunol. 143:3343–3352.
  • Eisenbeis, C. F., H. Singh, and J. Storb 1995. Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dev. 9:1377–1387.
  • Furnari, B. A., E. Poma, T. F. Kowalik, S. M. Huong, and J. Huang 1993. Human cytomegalovirus immediate-early gene 2 protein interacts with itself and with several novel cellular proteins. J. Virol. 67:4981–4991.
  • Galson, D. L., J. O. Hensold, T. R. Bishop, M. Schalling, A. D. D’Andrea, C. Jones, P. E. Auron, and J. Housman 1993. Mouse beta-globin DNA-binding protein B1 is identical to a proto-oncogene, the transcription factor Spi-1/PU.1, and is restricted in expression to hematopoietic cells and the testis. Mol. Cell. Biol. 13:2929–2941.
  • Galson, D. L., and J. Housman 1988. Detection of two tissue-specific DNA-binding proteins with affinity for sites in the mouse β-globin intervening sequence 2. Mol. Cell. Biol. 8:381–392.
  • Geist, L. J., H. A. Hopkins, L. Y. Dai, B. He, M. M. Monick, and J. Hunninghake 1997. Cytomegalovirus modulates transcription factors necessary for the activation of the tumor necrosis factor-alpha promoter. Am. J. Respir. Cell Mol. Biol. 16:31–37.
  • Geist, L. J., M. M. Monick, M. F. Stinski, and J. Hunninghake 1991. The immediate early genes of human cytomegalovirus upregulate expression of the interleukin-2 and interleukin-2 receptor genes. Am. J. Respir. Cell Mol. Biol. 5:292–296.
  • Hagemeier, C., R. Caswell, G. Hayhurst, J. Sinclair, and J. Kouzarides 1994. Functional interaction between the HCMV IE2 transactivator and the retinoblastoma protein. EMBO J. 13:2897–2903.
  • Hagemeier, C., S. Walker, R. Caswell, T. Kouzarides, and J. Sinclair 1992. The human cytomegalovirus 80-kilodalton but not the 72-kilodalton immediate-early protein transactivates heterologous promoters in a TATA box-dependent mechanism and interacts directly with TFIID. J. Virol. 66:4452–4456.
  • Hagemeier, C., S. M. Walker, P. J. Sissons, and J. Sinclair 1992. The 72K IE1 and 80K IE2 proteins of human cytomegalovirus independently transactivate the c-fos, c-myc and hsp70 promoters via basal promoter elements. J. Gen. Virol. 73:2385–2393.
  • Herr, W., and J. Cleary 1995. The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev. 9:1679–1693.
  • Hohaus, S., M. S. Petrovick, M. T. Voso, Z. Sun, D. E. Zhang, and J. Tenen 1995. PU.1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha gene. Mol. Cell. Biol. 15:5830–5845.
  • Hunninghake, G. W., B. G. Monks, L. J. Geist, M. M. Monick, M. A. Monroy, M. F. Stinski, A. C. Webb, J. M. Dayer, P. E. Auron, and J. Fenton 1992. The functional importance of a cap site-proximal region of the human prointerleukin 1 beta gene is defined by viral protein trans-activation. Mol. Cell. Biol. 12:3439–3448.
  • Iwamoto, G. K., M. M. Monick, B. D. Clark, P. E. Auron, M. F. Stinski, and J. Hunninghake 1990. Modulation of interleukin 1 beta gene expression by the immediate early genes of human cytomegalovirus. J. Clin. Investig. 85:1853–1857.
  • Johannsen, E., E. Koh, G. Mosialos, X. Tong, E. Kieff, and J. Grossman 1995. Epstein-Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and PU.1. J. Virol. 69:253–262.
  • Klemsz, M. J., and J. Maki 1996. Activation of transcription by PU.1 requires both acidic and glutamine domains. Mol. Cell. Biol. 16:390–397.
  • Kline, J. N., L. J. Geist, M. M. Monick, M. F. Stinski, and J. Hunninghake 1994. Regulation of expression of the IL-1 receptor antagonist (IL-1ra) gene by products of the human cytomegalovirus immediate early genes. J. Immunol. 152:2351–2357.
  • Kodandapani, R., F. Pio, C. Z. Ni, G. Piccialli, M. Klemsz, S. McKercher, R. A. Maki, and J. Ely 1996. A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain–DNA complex. Nature 380:456–460.
  • Kominato, Y., D. Galson, W. R. Waterman, A. C. Webb, and J. Auron 1995. Monocyte expression of the human prointerleukin 1 beta gene (IL1B) is dependent on promoter sequences which bind the hematopoietic transcription factor Spi-1/PU.1. Mol. Cell. Biol. 15:59–68.
  • Koval, V., F. M. Jault, P. G. Pal, T. N. Moreno, C. Aiken, D. Trono, S. A. Spector, and J. Spector 1995. Differential effects of human cytomegalovirus on integrated and unintegrated human immunodeficiency virus sequences. J. Virol. 69:1645–1651.
  • Kowalik, T. F., B. Wing, J. S. Haskill, J. C. Azizkhan, A. S. Baldwin Jr., and J. Huang 1993. Multiple mechanisms are implicated in the regulation of NF-kappa B activity during human cytomegalovirus infection. Proc. Natl. Acad. Sci. USA 90:1107–1111.
  • Lang, D., S. Gebert, H. Arlt, and J. Stamminger 1995. Functional interaction between the human cytomegalovirus 86-kilodalton IE2 protein and the cellular transcription factor CREB. J. Virol. 69:6030–6037.
  • Lang, D., and J. Stamminger 1993. The 86-kilodalton IE-2 protein of human cytomegalovirus is a sequence-specific DNA-binding protein that interacts directly with the negative autoregulatory response element located near the cap site of the IE-1/2 enhancer-promoter. J. Virol. 67:323–331.
  • Littlefield, O., and J. Nelson 1999. A new use for the ‘wing’ of the ‘winged’ helix-turn-helix motif in the HSF-DNA cocrystal. Nat. Struct. Biol. 6:464–470.
  • Lukac, D. M., N. Y. Harel, N. Tanese, and J. Alwine 1997. TAF-like functions of human cytomegalovirus immediate-early proteins. J. Virol. 71:7227–7239.
  • Lukac, D. M., J. R. Manuppello, and J. Alwine 1994. Transcriptional activation by the human cytomegalovirus immediate-early proteins: requirements for simple promoter structures and interactions with multiple components of the transcription complex. J. Virol. 68:5184–5193.
  • Malone, C. L., D. H. Vesole, and J. Stinski 1990. Transactivation of a human cytomegalovirus early promoter by gene products from the immediate-early gene IE2 and augmentation by IE1: mutational analysis of the viral proteins. J. Virol. 64:1498–1506.
  • Monick, M. M., L. J. Geist, M. F. Stinski, and J. Hunninghake 1992. The immediate early genes of human cytomegalovirus upregulate expression of the cellular genes myc and fos. Am. J. Respir. Cell Mol. Biol. 7:251–256.
  • Pizzorno, M. C., M. A. Mullen, Y. N. Chang, and J. Hayward 1991. The functionally active IE2 immediate-early regulatory protein of human cytomegalovirus is an 80-kilodalton polypeptide that contains two distinct activator domains and a duplicated nuclear localization signal. J. Virol. 65:3839–3852.
  • Pizzorno, M. C., P. O’Hare, L. Sha, R. L. LaFemina, and J. Hayward 1988. trans-Activation and autoregulation of gene expression by the immediate-early region 2 gene products of human cytomegalovirus. J. Virol. 62:1167–1179.
  • Pongubala, J. M., and J. Atchison 1997. PU.1 can participate in an active enhancer complex without its transcriptional activation domain. Proc. Natl. Acad. Sci. USA 94:127–132.
  • Pongubala, J. M., S. Nagulapalli, M. J. Klemsz, S. R. McKercher, R. A. Maki, and J. Atchison 1992. PU.1 recruits a second nuclear factor to a site important for immunoglobulin kappa 3′ enhancer activity. Mol. Cell. Biol. 12:368–378.
  • Sambucetti, L. C., J. M. Cherrington, G. W. Wilkinson, and J. Mocarski 1989. NK-kappa B activation of the cytomegalovirus enhancer is mediated by a viral transactivator and by T cell stimulation. EMBO J. 8:4251–4258.
  • Schwartz, R., B. Helmich, and J. Spector 1996. CREB and CREB-binding proteins play an important role in the IE2 86-kilodalton protein-mediated transactivation of the human cytomegalovirus 2.2-kilobase RNA promoter. J. Virol. 70:6955–6966.
  • Schwartz, R., M. H. Sommer, A. Scully, and J. Spector 1994. Site-specific binding of the human cytomegalovirus IE2 86-kilodalton protein to an early gene promoter. J. Virol. 68:5613–5622.
  • Scully, A. L., M. H. Sommer, R. Schwartz, and J. Spector 1995. The human cytomegalovirus IE2 86-kilodalton protein interacts with an early gene promoter via site-specific DNA binding and protein-protein associations. J. Virol. 69:6533–6540.
  • Shirakawa, F., K. Saito, C. A. Bonagura, D. L. Galson, M. J. Fenton, A. C. Webb, and J. Auron 1993. The human prointerleukin 1 beta gene requires DNA sequences both proximal and distal to the transcription start site for tissue-specific induction. Mol. Cell. Biol. 13:1332–1344.
  • Sieweke, M. H., H. Tekotte, U. Jarosch, and J. Graf 1998. Cooperative interaction of ets-1 with USF-1 required for HIV-1 enhancer activity in T cells. EMBO J. 17:1728–1739.
  • Sleigh, M. J. 1986. A nonchromatographic assay for expression of the chloramphenicol acetyltransferase gene in eukaryotic cells. Anal. Biochem. 156:251–256.
  • Smith, L. T., S. Hohaus, D. A. Gonzalez, S. E. Dziennis, and J. Tenen 1996. PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. Blood 88:1234–1247.
  • Sommer, M. H., A. L. Scully, and J. Spector 1994. Transactivation by the human cytomegalovirus IE2 86-kilodalton protein requires a domain that binds to both the TATA box-binding protein and the retinoblastoma protein. J. Virol. 68:6223–6231.
  • Tsang, A. P., J. E. Visvader, C. A. Turner, Y. Fujiwara, C. Yu, M. J. Weiss, M. Crossley, and J. Orkin 1997. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90:109–119.
  • Tsukada, J., M. Misago, Y. Serino, R. Ogawa, S. Murakami, M. Nakanishi, S. Tonai, Y. Kominato, I. Morimoto, P. E. Auron, and J. Eto 1997. Human T-cell leukemia virus type I Tax transactivates the promoter of human prointerleukin-1beta gene through association with two transcription factors, nuclear factor-interleukin-6 and Spi-1. Blood 90:3142–3153.
  • Walker, S., C. Hagemeier, J. G. Sissons, and J. Sinclair 1992. A 10-base-pair element of the human immunodeficiency virus type 1 long terminal repeat (LTR) is an absolute requirement for transactivation by the human cytomegalovirus 72-kilodalton IE1 protein but can be compensated for by other LTR regions in transactivation by the 80-kilodalton IE2 protein. J. Virol. 66:1543–1550.
  • Yoo, Y. D., C.-J. Chiou, K. S. Choi, Y. Yi, S. Michelson, S. Kim, G. S. Hayward, and J. Kim 1996. The IE2 regulatory protein of human cytomegalovirus induces expression of the human transforming growth factor β1 gene through an Egr-1 binding site. J. Virol. 70:7062–7070.
  • Yurochko, A. D., T. F. Kowalik, S.-M. Huong, and J. Huang 1995. Human cytomegalovirus upregulates NF-κB activity by transactivating the NF-κB p105/p50 and p65 promoters. J. Virol. 69:5391–5400.
  • Zhang, D. E., C. J. Hetherington, H. M. Chen, and J. Tenen 1994. The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol. Cell. Biol. 14:373–381.
  • Zhang, P., G. Behre, J. Pan, A. Iwama, N. Wara-aswapati, H. S. Radomska, P. E. Auron, D. G. Tenen, and J. Sun 1999. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc. Natl. Acad. Sci. USA 96:8705–8710.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.