74
Views
56
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

hnRNP U Inhibits Carboxy-Terminal Domain Phosphorylation by TFIIH and Represses RNA Polymerase II Elongation

&
Pages 6833-6844 | Received 01 Jun 1999, Accepted 05 Jul 1999, Published online: 28 Mar 2023

REFERENCES

  • Akhtar, A., G. Faye, and J. Bentley 1996. Distinct activated and non-activated RNA polymerase II complexes in yeast. EMBO J. 15:4654–4664.
  • Akoulitchev, S., T. P. Makel, R. A. Weinberg, and J. Reinberg 1995. Requirement for TFIIH kinase activity in transcription by RNA polymerase II. Nature 377:557–560.
  • Blau, J., H. Xiao, S. McCracken, P. O’Hare, J. Greenblatt, and J. Bentley 1996. Three functional classes of transcriptional activation domains. Mol. Cell. Biol. 16:2044–2055.
  • Brown, A. L., C.-H. Lee, J. K. Schwarz, N. Mitiku, H. Piwnica-Worms, and J. Chung 1999. A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc. Natl. Acad. Sci. USA 96:3745–3750.
  • Buermeyer, A. B., N. E. Thompson, L. A. Strasheim, R. R. Burgess, and J. Farnham 1992. The HIP1 initiator element plays a role in determining the in vitro requirement of the dihydrofolate reductase gene promoter for the C-terminal domain of RNA polymerase II. Mol. Cell. Biol. 12:2250–2259.
  • Cavallini, B., J. Huet, J. L. Plassat, A. Sentenac, J.-M. Egly, and J. Chambon 1988. A yeast activity can substitute for the HeLa TATA box factor. Nature 334:77–80.
  • Chun, R. F., and J. Jeang 1996. Requirements for RNA polymerase II carboxyl-terminal domain for activated transcription of human retroviruses human T cell lymphotropic virus I and HIV-1. J. Biol. Chem. 271:27888–27894.
  • Cormack, B. P., M. Strubin, A. S. Ponticelli, and J. Struhl 1991. Functional differences between yeast and human TFIID are localized to the highly conserved region. Cell 65:341–348.
  • Cujec, T. P., H. Cho, E. Maldonado, J. Meyer, D. Reinberg, and J. Peterlin 1997. The human immunodeficiency virus transactivator Tat interacts with the RNA polymerase II holoenzyme. Mol. Cell. Biol. 17:1817–1823.
  • Cujec, T. P., H. Okamoto, K. Fujinaga, J. Meyer, H. Chamberlin, D. O. Morgan, and J. Peterlin 1997. The HIV transactivator TAT binds to the CDK-activating kinase and activates the phosphorylation of the carboxy-terminal domain of RNA polymerase II. Genes Dev. 11:2645–2657.
  • Cullen, B. R. 1995. Regulation of HIV gene expression. AIDS 9 (Suppl. A):19–32.
  • Dahmus, M. E. 1995. Phosphorylation of the C-terminal domain of RNA polymerase II. Biochim. Biophys. Acta 1261:171–182.
  • Drapkin, R., and J. Reinberg 1994. The multifunctional TFIIH complex and transcriptional control. Trends Biochem. Sci. 19:506–508.
  • Dreyfuss, G., M. J. Matunis, S. Pinol-Roma, and J. Burd 1993. hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62:289–321.
  • Eggert, M., J. Michel, S. Schneider, H. Bornfleth, A. Baniahmad, F. O. Fackelmayer, S. Schmidt, and J. Renkawitz 1997. The glucocorticoid receptor is associated with the RNA-binding nuclear matrix protein hnRNP U. J. Biol. Chem. 272:28471–29478.
  • Fackelmayer, F. O., K. Dahm, A. Renz, U. Ramsperger, and J. Richter 1994. Nucleic-acid-binding properties of hnRNP U/SAF-A, a nuclear matrix protein which binds DNA and RNA in vivo and in vitro. Eur. J. Biochem. 221:749–757.
  • Garcia-Martinez, L. F., G. Mavankal, J. M. Neveu, W. S. Lane, D. Ivanov, and J. Gaynor 1997. Purification of a Tat-associated kinase reveals a TFIIH complex that modulates HIV-1 transcription. EMBO J. 16:2836–2850.
  • Gerber, H. P., M. Hagmann, K. Seipel, O. Georgiev, M. A. West, Y. Litingtung, W. Schaffner, and J. Corden 1995. RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature 374:660–662.
  • Gohring, F., and J. Fackelmayer 1997. The scaffold/matrix attachment region binding protein hnRNP U (SAF-A) is directly bound to chromosomal DNA in vivo: a chemical cross-linking study. Biochemistry 36:8276–8283.
  • Gohring, F., B. L. Schwab, P. Nicotera, M. Leist, and J. Fackelmayer 1997. The novel SAR-binding domain of scaffold attachment factor A (SAF-A) is a target in apoptotic nuclear breakdown. EMBO J. 16:7361–7371.
  • Gold, M. O., J.-P. Tassan, E. A. Nigg, A. P. Rice, and J. Herrmann 1996. Viral transactivators E1A and VP16 interact with a large complex that is associated with CTD kinase activity and contains CDK8. Nucleic Acids Res. 24:3771–3777.
  • Kim, M. Unpublished observations.
  • Kim, M. K., J. H. McClaskey, D. L. Bodenner, and J. Weintraub 1993. An AP-1-like factor and the pituitary-specific factor Pit-1 are both necessary to mediate hormonal induction of human thyrotropin beta gene expression. J. Biol. Chem. 268:23366–23373.
  • Kim, M. K., L. A. Lesoon-Wood, B. D. Weintraub, and J. Chung 1996. A soluble transcription factor, Oct-1, is also found in the insoluble nuclear matrix and possesses silencing activity in its alanine-rich domain. Mol. Cell. Biol. 16:4366–4377.
  • Krumm, A., L. B. Hickey, and J. Groudine 1995. Promoter-proximal pausing of RNA polymerase II defines a general rate-limiting step after transcription initiation. Genes Dev. 9:559–572.
  • Liao, S.-M., J. Zhang, D. A. Jeffery, A. J. Koleske, C. M. Thompson, D. M. Chao, M. Viljoen, J. van Vuuren, and J. Young 1995. A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature 374:193–196.
  • Lu, H., O. Flores, R. Weinmann, and J. Reinberg 1991. The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc. Natl. Acad. Sci. USA 88:10004–10008.
  • Lu, H., L. Zawel, L. Fischer, J.-M. Egly, and J. Reinberg 1992. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature 358:641–645.
  • Maldonado, E., R. Shiekhattar, M. Sheldon, H. Cho, R. Drapkin, J. A. Inostroza, P. Rickett, E. Lees, C. W. Anderson, S. Linn, and J. Reinberg 1996. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 381:86–89.
  • Mancebo, H. S. Y., G. Lee, J. Flygare, J. Tomassini, P. Luu, Y. Zhu, J. Peng, C. Blau, D. Hazuda, D. Price, and J. Flores 1997. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev. 11:2633–2644.
  • Marshall, N. F., and J. Price 1992. Control of formation of two distinct classes of RNA polymerase II elongation complexes. Mol. Cell. Biol. 12:2078–2090.
  • Marshall, N. F., and J. Price 1995. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J. Biol. Chem. 270:12335–12338.
  • Marshall, N. F., J. Peng, Z. Xie, and J. Price 1996. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J. Biol. Chem. 271:27176–27183.
  • Mattern, K. A., B. M. Humbel, A. O. Muijsers, L. De Jong, and J. Van Driel 1996. hnRNP proteins and B23 are the major proteins of the internal nuclear matrix of HeLa S3 cells. J. Cell. Biochem. 62:275–289.
  • Michelotti, E. F., G. A. Michelotti, A. I. Aronsohn, and J. Levens 1996. Heterogeneous nuclear ribonucleoprotein K is a transcription factor. Mol. Cell. Biol. 16:2350–2360.
  • O’Brien, T., S. Hardin, A. Greenleaf, and J. Lis 1994. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature 370:75–77.
  • Okamoto, H., C. T. Sheline, J. Corden, K. A. Jones, and J. Peterlin 1996. Trans-activation by human immunodeficiency virus Tat protein requires the C-terminal domain of RNA polymerase II. Proc. Natl. Acad. Sci. USA 93:11575–11579.
  • Ossipow, V., J. P. Tassan, E. A. Nigg, and J. Schibler 1995. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83:137–146.
  • Parada, C. A., and J. Roeder 1996. Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature 384:375–378.
  • Peterson, S. R., A. Dvir, C. W. Anderson, and J. Dynan 1992. DNA binding provides a signal for phosphorylation of the RNA polymerase II heptapeptide repeats. Genes Dev. 6:426–438.
  • Pinol-Roma, S., Y. D. Choi, M. J. Matunis, and J. Dreyfuss 1988. Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins. Genes Dev. 2:215–227.
  • Rochette-Egly, C., S. Adam, M. Rossignol, J.-M. Egly, and J. Chambon 1997. Stimulation of RARα activation function AF-1 through binding to the general transcription factor TFIIH and phosphorylation by Cdk7. Cell 90:97–107.
  • Rossignol, M., I. Kolb-Cheynel, and J. Egly 1997. Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH. EMBO J. 16:1628–1637.
  • Roy, R., J. P. Adamczewski, T. Seroz, W. Vermeulen, J. P. Tassan, L. Schaeffer, E. A. Nigg, J. H. Hoeijmakers, and J. Egly 1994. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79:1093–1101.
  • Stargell, L. A., and J. Struhl 1996. Transcriptional activation in vivo: two steps forward. Trends Genet. 12:3111–3115.
  • Struhl, K. 1996. Transcriptional enhancement by acidic activators. Biochim. Biophys. Acta 1288:O15–O17.
  • Struhl, K. 1995. Yeast transcriptional regulatory mechanisms. Annu. Rev. Genet. 29:651–674.
  • Svejstrup, J. Q., Y. Li, J. Fellows, A. Gnatt, S. Bjorklund, and J. Kornberg 1997. Evidence for a mediator cycle at the initiation of transcription. Proc. Natl. Acad. Sci. USA 94:6075–6078.
  • Tomonaga, T., and J. Levens 1995. Heterogeneous nuclear ribonucleoprotein K is a DNA-binding transactivator. J. Biol. Chem. 270:4875–4881.
  • Xie, Z., and J. Price 1997. Drosophila factor 2, an RNA polymerase II transcript release factor, has DNA-dependent ATPase activity. J. Biol. Chem. 272:31902–31907.
  • Yankulov, K., K. Yamashita, R. Roy, J.-M. Egly, and J. Bentley 1995. The transcriptional elongation inhibitor 5,6-dichlor-a-β-d-ribofuranosylbenzimidazole inhibits transcription factor IIH-associated protein kinase. J. Biol. Chem. 270:23922–23925.
  • Yankulov, K. Y., and J. Bentley 1997. Regulation of CDK7 substrate specificity by MAT1 and TFIIH. EMBO J. 16:1638–1646.
  • Yankulov, K. Y., M. Pandes, S. McCracken, D. Bouchard, and J. Bentley 1996. TFIIH functions in regulating transcriptional elongation by RNA polymerase II in Xenopus oocytes. Mol. Cell. Biol. 16:3291–3299.
  • Zawel, L., P. Kumar, and J. Reinberg 1995. Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev. 9:1479–1490.
  • Zehring, W. A., and J. Greenleaf 1990. The carboxyl-terminal repeat domain of RNA polymerase II is not required for transcription factor Sp1 to function in vitro. J. Biol. Chem. 265:8351–8353.
  • Zehring, W. A., J. M. Lee, J. R. Weeks, R. S. Jokerst, and J. Greenleaf 1988. The C-terminal repeat domain of RNA polymerase II largest subunit is essential in vivo but is not required for accurate transcription initiation in vitro. Proc. Natl. Acad. Sci. USA 85:3698–3702.
  • Zhu, Y., T. Pe’ery, J. Peng, Y. Ramanathan, N. Marshall, T. Marshall, B. Amendt, M. B. Mathews, and J. Price 1997. Transcription elongation factor P-TEFb is required for HIV-1 Tat transactivation in vitro. Genes Dev. 11:2622–2632.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.