9
Views
50
CrossRef citations to date
0
Altmetric
Gene Expression

Delayed Translational Silencing of Ceruloplasmin Transcript in Gamma Interferon-Activated U937 Monocytic Cells: Role of the 3′ Untranslated Region

&
Pages 6898-6905 | Received 05 May 1999, Accepted 09 Jul 1999, Published online: 28 Mar 2023

REFERENCES

  • Al-Timimi, D. J., and J. Dormandy 1977. The inhibition of lipid autoxidation by human caeruloplasmin. Biochem. J. 168:283–288.
  • Askwith, C., D. Eide, A. Van Ho, P. S. Bernard, L. Li, S. Davis-Kaplan, D. M. Sipe, and J. Kaplan 1994. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76:403–410.
  • Attieh, Z. K., C. K. Mukhopadhyay, V. Seshadri, N. A. Tripoulas, and J. Fox 1999. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism. J. Biol. Chem. 274:1116–1123.
  • Avni, D., S. Shama, F. Loreni, and J. Meyuhas 1994. Vertebrate mRNAs with a 5′-terminal pyrimidine tract are candidates for translational repression in quiescent cells: characterization of the translational cis-regulatory element. Mol. Cell. Biol. 14:3822–3833.
  • Aziz, N., and J. Munro 1987. Iron regulates ferritin mRNA translation through a segment of its 5′ untranslated region. Proc. Natl. Acad. Sci. USA 84:8478–8482.
  • Black, B. L., J. Lu, and J. Olson 1997. The MEF2A 3′ untranslated region functions as a cis-acting translational repressor. Mol. Cell. Biol. 17:2756–2763.
  • Byrd, T. F., and J. Horwitz 1989. Interferon gamma-activated human monocytes downregulate transferrin receptors and inhibit the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. J. Clin. Investig. 83:1457–1465.
  • Chu, E., D. M. Koeller, J. L. Casey, J. C. Drake, B. A. Chabner, P. C. Elwood, S. Zinn, and J. Allegra 1991. Autoregulation of human thymidylate synthase messenger RNA translation by thymidylate synthase. Proc. Natl. Acad. Sci. USA 88:8977–8981.
  • Church, W. R., R. L. Jernigan, J. Toole, R. M. Hewick, J. Knopf, G. J. Knutson, M. E. Nesheim, K. G. Mann, and J. Fass 1984. Coagulation factors V and VIII and ceruloplasmin constitute a family of structurally related proteins. Proc. Natl. Acad. Sci. USA 81:6934–6937.
  • Clemens, M. J. 1996. Protein kinases that phosphorylate eIF2 and eIF2B, and their role in eukaryotic cell translational control, p. 139–172. In J. W. B. Hershey, M. B. Mathews, N. Sonenberg (ed.), Translational control. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Craig, A. W., A. Haghighat, A. T. Yu, and J. Sonenberg 1998. Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature 392:520–523.
  • Curzon, G. 1961. Some properties of coupled iron-caeruloplasmin oxidation systems. Biochem. J. 79:656–663.
  • Daimon, M., K. Yamatani, M. Igarashi, N. Fukase, T. Kawanami, T. Kato, M. Tominaga, and J. Sasaki 1995. Fine structure of the human ceruloplasmin gene. Biochem. Biophys. Res. Commun. 208:1028–1035.
  • Ehrenwald, E., and J. Fox 1996. Role of endogenous ceruloplasmin in LDL oxidation by human U937 monocytic cells. J. Clin. Investig. 97:884–890.
  • Ercikan-Abali, E. A., D. Banerjee, M. C. Waltham, N. Skacel, K. W. Scotto, and J. Bertino 1997. Dihydrofolate reductase protein inhibits its own translation by binding to dihydrofolate reductase mRNA sequences within the coding region. Biochemistry 36:12317–12322.
  • Espel, E., J. A. Garcia-Sanz, V. Aubert, V. Menoud, P. Sperisen, N. Fernandez, and J. Spertini 1996. Transcriptional and translational control of TNF-α gene expression in human monocytes by major histocompatibility complex class II ligands. Eur. J. Immunol. 26:2417–2424.
  • Fagard, R., and J. London 1981. Relationship between phosphorylation and activity of heme-regulated eukaryotic initiation factor 2α kinase. Proc. Natl. Acad. Sci. USA 78:866–870.
  • Farrell, P. J., K. Balkow, T. Hunt, R. J. Jackson, and J. Trachsel 1977. Phosphorylation of initiation factor elF-2 and the control of reticulocyte protein synthesis. Cell 11:187–200.
  • Fleming, R. E., and J. Gitlin 1992. Structural and functional analysis of the 5′-flanking region of the rat ceruloplasmin gene. J. Biol. Chem. 267:479–486.
  • Fleming, R. E., I. P. Whitman, and J. Gitlin 1991. Induction of ceruloplasmin gene expression in rat lung during inflammation and hyperoxia. Am. J. Physiol. 260:L68–L74.
  • Fox, P. L., C. Mukhopadhyay, and J. Ehrenwald 1995. Structure, oxidant activity, and cardiovascular mechanisms of human ceruloplasmin. Life Sci. 56:1749–1758.
  • Fuhr, J. E., and J. Natta 1972. Translational control of globin chain synthesis. Nat. New. Biol. 240:274–276.
  • Gitlin, J. D. 1988. Transcriptional regulation of ceruloplasmin gene expression during inflammation. J. Biol. Chem. 263:6281–6287.
  • Gray, N. K., and J. Hentze 1994. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J. 13:3882–3891.
  • Gross, M., and J. Rabinovitz 1972. Control of globin synthesis in cell-free preparations of reticulocytes by formation of a translational repressor that is inactivated by hemin. Proc. Natl. Acad. Sci. USA 69:1565–1568.
  • Harris, Z. L., L. W. Klomp, and J. Gitlin 1998. Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Am. J. Clin. Nutr. 67:972S–977S.
  • Imataka, H., A. Gradi, and J. Sonenberg 1998. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17:7480–7489.
  • Izquierdo, J. M., and J. Cuezva 1997. Control of the translational efficiency of β-F1-ATPase mRNA depends on the regulation of a protein that binds the 3′ untranslated region of the mRNA. Mol. Cell. Biol. 17:5255–5268.
  • Kaplan, J., and J. O’Halloran 1996. Iron metabolism in eukaryotes: Mars and Venus at it again. Science 271:1510–1512.
  • Klausner, R. D., T. A. Rouault, and J. Harford 1993. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72:19–28.
  • Klebanoff, S. J. 1992. Bactericidal effect of Fe2+, ceruloplasmin, and phosphate. Arch. Biochem. Biophys. 295:302–308.
  • Korth, M. J., M. G. Katze 1997. mRNA metabolism and cancer, p. 265–280. In J. B. Harford, D. R. Morris (ed.), mRNA metabolism and posttranscriptional gene regulation. Wiley-Liss, Inc., New York, N.Y.
  • Koschinsky, M. L., W. D. Funk, B. A. van Oost, and J. MacGillivray 1986. Complete cDNA sequence of human preceruloplasmin. Proc. Natl. Acad. Sci. USA 83:5086–5090.
  • Levy, S., D. Avni, N. Hariharan, R. P. Perry, and J. Meyuhas 1991. Oligopyrimidine tract at the 5′ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc. Natl. Acad. Sci. USA 88:3319–3323.
  • Mazumder, B., C. K. Mukhopadhyay, A. Prok, M. K. Cathcart, and J. Fox 1997. Induction of ceruloplasmin synthesis by IFN-γ in human monocytic cells. J. Immunol. 159:1938–1944.
  • Muckenthaler, M., N. K. Gray, and J. Hentze 1998. IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F. Mol. Cell. 2:383–388.
  • Mukhopadhyay, C. K., Z. K. Attieh, and J. Fox 1998. Role of ceruloplasmin in cellular iron uptake. Science 279:714–717.
  • Mukhopadhyay, C. K., E. Ehrenwald, and J. Fox 1996. Ceruloplasmin enhances smooth muscle cell- and endothelial cell-mediated low density lipoprotein oxidation by a superoxide-dependent mechanism. J. Biol. Chem. 271:14773–14778.
  • Mukhopadhyay, C. K., B. Mazumder, P. F. Lindley, and J. Fox 1997. Identification of the prooxidant site of human ceruloplasmin: a model for oxidative damage by copper bound to protein surfaces. Proc. Natl. Acad. Sci. USA 94:11546–11551.
  • Ortel, T. L., N. Takahashi, and J. Putnam 1984. Structural model of human ceruloplasmin based on internal triplication, hydrophilic/hydrophobic character, and secondary structure of domains. Proc. Natl. Acad. Sci. USA 81:4761–4765.
  • Osaki, S., D. A. Johnson, and J. Frieden 1966. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J. Biol. Chem. 241:2746–2751.
  • Ostareck, D. H., A. Ostareck-Lederer, M. Wilm, B. J. Thiele, M. Mann, and J. Hentze 1997. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3′ end. Cell 89:597–606.
  • Ostareck-Lederer, A., D. H. Ostareck, N. Standart, and J. Thiele 1994. Translation of 15-lipoxygenase mRNA is inhibited by a protein that binds to a repeated sequence in the 3′ untranslated region. EMBO J. 13:1476–1481.
  • Preiss, T., and J. Hentze 1998. Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392:516–520.
  • Rouault, T. A., M. W. Hentze, S. W. Caughman, J. B. Harford, and J. Klausner 1988. Binding of a cytosolic protein to the iron-responsive element of human ferritin messenger RNA. Science 241:1207–1210.
  • Rydén, L. 1984. Ceruloplasmin Copper proteins and copper enzymes In R. Lontie (ed.), III:37–100 CRC Press, Boca Raton, Fla.
  • Sachs, A. B. 1993. Messenger RNA degradation in eukaryotes. Cell 74:413–421.
  • Sachs, A. B., and J. Deardorff 1992. Translation initiation requires the PAB-dependent poly(A) ribonuclease in yeast. Cell 70:961–973.
  • Sachs, A. B., P. Sarnow, and J. Hentze 1997. Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89:831–838.
  • Standart, N., and J. Jackson 1994. Regulation of translation by specific protein/mRNA interactions. Biochimie 76:867–879.
  • Tarun, S. Z., and J. Sachs 1996. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 15:7168–7177.
  • Wells, S. E., P. E. Hillner, R. D. Vale, and J. Sachs 1998. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell. 2:135–140.
  • Wold, W. S., T. W. Hermiston, and J. Tollefson 1994. Adenovirus proteins that subvert host defenses. Trends Microbiol. 2:437–443.
  • Wormington, M. 1991. Preparation of synthetic mRNAs and analyses of translational efficiency in microinjected Xenopus oocytes. Methods Cell Biol. 36:167–183.
  • Wu, J., and J. Bag 1998. Negative control of the poly(A)-binding protein mRNA translation is mediated by the adenine-rich region of its 5′-untranslated region. J. Biol. Chem. 273:34535–34542.
  • Yang, F., S. L. Naylor, J. B. Lum, S. Cutshaw, J. L. McCombs, K. H. Naberhaus, J. R. McGill, G. S. Adrian, C. M. Moore, D. R. Barnett, and J. Bowman 1986. Characterization, mapping, and expression of the human ceruloplasmin gene. Proc. Natl. Acad. Sci. USA 83:3257–3261.
  • Zoladek, T., G. Vaduva, L. A. Hunter, M. Boguta, B. D. Go, N. C. Martin, and J. Hopper 1995. Mutations altering the mitochondrial-cytoplasmic distribution of Mod5p implicate the actin cytoskeleton and mRNA 3′ ends and/or protein synthesis in mitochondrial delivery. Mol. Cell. Biol. 15:6884–6894.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.