35
Views
127
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Leukemic HRX Fusion Proteins Inhibit GADD34-Induced Apoptosis and Associate with the GADD34 and hSNF5/INI1 Proteins

, , , , , & show all
Pages 7050-7060 | Received 03 Nov 1998, Accepted 29 Jun 1999, Published online: 28 Mar 2023

REFERENCES

  • Adler, H. T., F. S. Nallaseth, G. Walter, and J. Tkachuk 1997. HRX leukemic fusion proteins form a heterocomplex with the leukemia-associated protein SET and protein phosphatase 2A. J. Biol. Chem. 272:28407–28414.
  • Akao, Y., H. Mizoguchi, K. Misiura, W. J. Stec, M. Seto, N. Ohishi, and J. Yagi 1998. Antisense oligodeoxyribonucleotide against the MLL-LTG19 chimeric transcript inhibits cell growth and induces apoptosis in cells of an infantile leukemia cell line carrying the t(11;19) chromosomal translocation. Cancer Res. 58:3773–3776.
  • Arakawa, H., T. Nakamura, A. B. Zhadanov, V. Fidanza, T. Yano, F. Bullrich, M. Shimizu, J. Blechman, A. Mazo, E. Canaani, and J. Croce 1998. Identification and characterization of the ARP1 gene, a target for the human acute leukemia ALL1 gene. Proc. Natl. Acad. Sci. USA 95:4573–4578.
  • Bernard, O. A., and J. Berger 1995. Molecular basis of 11q23 rearrangements in hematopoietic malignant proliferations. Genes Chromosomes Cancer 13:75–85.
  • Borkhardt, A., R. Repp, O. A. Haas, T. Leis, J. Harbott, J. Kreuder, J. Hammermann, T. Henn, and J. Lampert 1997. Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23). Oncogene 14:195–202.
  • Breen, T. R., V. Chinwalla, and J. Harte 1995. Trithorax is required to maintain engrailed expression in a subset of engrailed-expressing cells. Mech. Dev. 52:89–98.
  • Breen, T. R., and J. Harte 1993. Trithorax regulates multiple homeotic genes in the bithorax and Antennapedia complexes and exerts different tissue-specific, parasegment-specific and promoter-specific effects on each. Development 117:119–134.
  • Brown, S. M., A. R. MacLean, E. A. McKie, and J. Harland 1997. The herpes simplex virus virulence factor ICP34.5 and the cellular protein MyD116 complex with proliferating cell nuclear antigen through the 63-amino-acid domain conserved in ICP34.5, MyD116, and GADD34. J. Virol. 71:9442–9449.
  • Cairns, B. R., N. L. Henry, and J. Kornberg 1996. TFG/TAF30/ANC1, a component of the yeast SWI/SNF complex that is similar to the leukemogenic proteins ENL and AF-9. Mol. Cell. Biol. 16:3308–3316.
  • Chou, J., and J. Roizman 1992. The gamma 1(34.5) gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programmed cell death in neuronal cells. Proc. Natl. Acad. Sci. USA 89:3266–3270.
  • Corral, J., I. Lavenir, H. Impey, A. J. Warren, A. Forster, T. A. Larson, S. Bell, A. N. McKenzie, G. King, and J. Rabbitts 1996. An M11-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 85:853–861.
  • Dingwall, A. K., S. J. Beek, C. M. McCallum, J. W. Tamkun, G. V. Kalpana, S. P. Goff, and J. Scott 1995. The Drosophila snr1 and brm proteins are related to yeast SWI/SNF proteins and are components of a large protein complex. Mol. Biol. Cell 6:777–791.
  • Djabali, M., L. Selleri, P. Parry, M. Bower, B. D. Young, and J. Evans 1992. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nat Genet. 2:113–118 (Erratum, 4:431, 1993.)
  • DuBridge, R. B., P. Tang, H. C. Hsia, P. M. Leong, J. H. Miller, and J. Calos 1987. Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol. Cell. Biol. 7:379–387.
  • Falvo, J. V., D. Thanos, and J. Maniatis 1995. Reversal of intrinsic DNA bends in the IFN beta gene enhancer by transcription factors and the architectural protein HMG I(Y). Cell. 83:1101–1111.
  • Fidanza, V., P. Melotti, T. Yano, T. Nakamura, A. Bradley, E. Canaani, B. Calabretta, and J. Croce 1996. Double knockout of the ALL-1 gene blocks hematopoietic differentiation in vitro. Cancer Res. 56:1179–1183.
  • Fornace, A. J., I. J. Alamo, and J. Hollander 1988. DNA damage-inducible transcripts in mammalian cells. Proc. Natl. Acad. Sci. USA 85:8800–8804.
  • Gu, Y., T. Nakamura, H. Alder, R. Prasad, O. Canaani, G. Cimino, C. M. Croce, and J. Canaani 1992. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 71:701–708.
  • Hall, P. A., J. M. Kearsey, P. J. Coates, D. G. Norman, E. Warbrick, and J. Cox 1995. Characterisation of the interaction between PCNA and Gadd45. Oncogene 10:2427–2433.
  • Harrison, C. J., A. Cuneo, R. Clark, B. Johansson, M. LafagePochitaloff, F. Mugneret, A. V. Moorman, and J. SeckerWalker 1998. Ten novel 11q23 chromosomal partner sites. Leukemia 12:811–822.
  • He, B., J. Chou, D. A. Liebermann, B. Hoffman, and J. Roizman 1996. The carboxyl terminus of the murine MyD116 gene substitutes for the corresponding domain of the gamma (1)34.5 gene of herpes simplex virus to preclude the premature shutoff of total protein synthesis in infected human cells. J. Virol. 70:84–90.
  • He, B., M. Gross, and J. Roizman 1997. The gamma (1)34.5 protein of herpes simplex virus I complexes with protein phosphatase 1 alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc. Natl. Acad. Sci. USA 94:843–848.
  • Hess, J. L., B. D. Yu, B. Li, R. Hanson, and J. Korsmeyer 1997. Defects in yolk sac hematopoiesis in Mll-null embryos. Blood 90:1799–1806.
  • Hillion, J., M. LeConiat, P. Jonveaux, R. Berger, and J. Bernard 1997. AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood 90:3714–3719.
  • Hollander, M. C., Q. M. Zhan, I. Bae, and J. Fornace 1997. Mammalian GADD34, an apoptosis- and DNA damage-inducible gene. J. Biol. Chem. 272:13731–13737.
  • Hunger, S. P., D. C. Tkachuk, M. D. Amylon, M. P. Link, A. J. Carroll, J. L. Welborn, C. L. Willman, and J. Cleary 1993. HRX involvement in de novo and secondary leukemias with diverse chromosome 11q23 abnormalities. Blood 81:3197–3203.
  • Ida, K., I. Kitabayashi, T. Taki, M. Taniwaki, K. Noro, M. Yamamoto, M. Ohki, and J. Hayashi 1997. Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood 90:4699–4704.
  • Joh, T., Y. Kagami, K. Yamamoto, T. Segawa, J. Takizawa, T. Takahashi, R. Ueda, and J. Seto 1996. Identification of MLL and chimeric MLL gene products involved in 11q23 translocation and possible mechanisms of leukemogenesis by MLL truncation. Oncogene 13:1945–1953.
  • John, S., R. B. Reeves, J. X. Lin, R. Child, J. M. Leiden, C. B. Thompson, and J. Leonard 1995. Regulation of cell-type-specific interleukin-2 receptor alpha-chain gene expression: potential role of physical interactions between Elf-1, HMG-I(Y), and NF-kappa B family proteins. Mol. Cell. Biol. 15:1786–1796.
  • Kobayashi, H., R. Espinosa, M. J. Thirman, E. M. Davis, M. O. Diaz, B. M. M. Le, and J. Rowley 1993. Variability of 11q23 rearrangements in hematopoietic cell lines identified with fluorescence in situ hybridization. Blood 81:3027–3033.
  • Kwiatkowski, B. A., L. S. Bastian, T. R. J. Bauer, S. Tsai, K. A. G. Zielinska, and J. Hickstein 1998. The ets family member Tel binds to the Fli-1 oncoprotein and inhibits its transcriptional activity. J. Biol. Chem. 273:17525–17530.
  • Lavau, C., S. J. Szilvassy, R. Slany, and J. Cleary 1997. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J. 16:4226–4237.
  • Leibovitz, A., J. C. Stinson, W. B. McCombs, C. E. McCoy, K. C. Mazur, and J. Mabry 1976. Classification of human colorectal adenocarcinoma cell lines. Cancer Res. 36:4562–4569.
  • Majidi, M., A. E. Hubbs, and J. Lichy 1998. Activation of extracellular signal-regulated kinase 2 by a novel Abl-binding protein, ST5. J Biol Chem. 273:16608–16614.
  • Megonigal, M. D., E. F. Rappaport, D. H. Jones, T. M. Williams, B. D. Lovett, K. M. Kelly, P. H. Lerou, T. Moulton, M. L. Budarf, and J. Felix 1998. t(11;22)(q23;q11.2) in acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes. Proc. Natl. Acad. Sci. USA 95:6413–6418.
  • Morrissey, J. J., S. Raney, and J. Cleary 1997. The FEL (AF-4) protein donates transcriptional activation sequences to HRX-FEL fusion proteins in leukemias containing t(4;11)(q21;q23) chromosomal translocations. Leuk. Res. 21:911–917.
  • Muchardt, C., B. Bourachot, J. C. Reyes, and J. Yaniv 1998. ras transformation is associated with decreased expression of the brm/SNF2alpha ATPase from the mammalian SWI-SNF complex. EMBO J. 17:223–231.
  • Naik, P., J. Karrim, and J. Hanahan 1996. The rise and fall of apoptosis during multistage tumorigenesis: down-modulation contributes to tumor progression from angiogenic progenitors. Genes Dev. 10:2105–2116.
  • Prasad, R., T. Yano, C. Sorio, T. Nakamura, R. Rallapalli, Y. Gu, D. Leshkowitz, C. M. Croce, and J. Canaani 1995. Domains with transcriptional regulatory activity within the ALL1 and AF4 proteins involved in acute leukemia. Proc. Natl. Acad. Sci. USA 92:12160–12164.
  • Quinn, J., A. M. Fyrberg, R. W. Ganster, M. C. Schmidt, and J. Peterson 1996. DNA-binding properties of the yeast SWI/SNF complex. Nature 379:844–847.
  • Rozenblattt-Rosen, O., T. Rozovskaia, D. Burakov, Y. Sedkov, S. Tillib, J. Blechman, T. Nakamura, C. M. Croce, A. Mazo, and J. Canaani 1998. The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc. Natl. Acad. Sci. USA 95:4152–4157.
  • Rubnitz, J. E., F. G. Behm, and J. Downing 1996. 11q23 rearrangements in acute leukemia. Leukemia 10:74–82.
  • Rubnitz, J. E., J. Morrissey, P. A. Savage, and J. Cleary 1994. ENL, the gene fused with HRX in t(11;19) leukemias, encodes a nuclear protein with transcriptional activation potential in lymphoid and myeloid cells. Blood 84:1747–1752.
  • Shibata, M. A., I. G. Maroulakou, C. L. Jorcyk, L. G. Gold, J. M. Ward, and J. Green 1996. p53-independent apoptosis during mammary tumor progression in C3(1)/SV40 large T antigen transgenic mice: suppression of apoptosis during the transition from preneoplasia to carcinoma. Cancer Res. 56:2998–3003.
  • Shilatifard, A., W. S. Lane, K. W. Jackson, R. C. Conaway, and J. Conaway 1996. An RNA polymerase II elongation factor encoded by the human ELL gene. Science 271:1873–1876.
  • Slany, R. K., C. Lavau, and J. Cleary 1998. The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX. Mol. Cell. Biol. 18:122–129.
  • So, C. W., C. Caldas, M. M. Liu, S. J. Chen, Q. H. Huang, L. J. Gu, M. H. Sham, L. M. Wiedemann, and J. Chan 1997. EEN encodes for a member of a new family of proteins containing an Src homology 3 domain and is the third gene located on chromosome 19p13 that fuses to MLL in human leukemia. Proc. Natl. Acad. Sci. USA 94:2563–2568.
  • Sobulo, O. M., J. Borrow, R. Tomek, S. Reshmi, A. Harden, B. Schlegelberger, D. Housman, N. A. Doggett, J. D. Rowley, and J. Zeleznikle 1997. MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc. Natl. Acad. Sci. USA 94:8732–8737.
  • Su, Z. Z., Y. J. Shi, and J. Fisher 1997. Subtraction hybridization identifies a transformation progression-associated gene PEG-3 with sequence homology to a growth arrest and DNA damage-inducible gene. Proc. Natl. Acad. Sci. USA 94:9125–9130.
  • Taki, T., M. Sako, M. Tsuchida, and J. Hayashi 1997. The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene. Blood 89:3945–3950.
  • Thirman, M. J., D. A. Levitan, H. Kobayashi, M. C. Simon, and J. Rowley 1994. Cloning of ELL, a gene that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 91:12110–12114.
  • Tkachuk, D. C., S. Kohler, and J. Cleary 1992. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71:691–700.
  • Versteege, I., N. S’evenet, J. Lange, M. M. F. Rousseau, P. Ambros, R. Handgretinger, A. Aurias, and J. Delattre 1998. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394:203–206.
  • Wang, W., J. Cot’e, Y. Xue et al.. 1996. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15:5370–5382.
  • Wu, D. Y., G. V. Kalpana, S. P. Goff, and J. Schubach 1996. Epstein-Barr virus nuclear protein 2 (EBNA2) binds to a component of the human SNF-SWI complex, hSNF5/Ini1. J. Virol. 70:6020–6028.
  • Wu, D. Y., G. V. Kalpana, S. P. Goff, and J. Schubach 1996. Epstein-Barr virus nuclear protein 2 (EBNA2) binds to a component of the human SNF-SWI complex, hSNF5/Ini1. J. Virol. 70:6020–6028.
  • Young, B. D., and J. Saha 1996. Chromosome abnormalities in leukaemia:The 11q23 paradigm. Cancer Surv. 28:225–245.
  • Yu, B. D., J. L. Hess, S. E. Horning, G. A. Brown, and J. Korsmeyer 1995. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378:505–508.
  • Zhan, Q., K. A. Lord, I. J. Alamo, M. C. Hollander, F. Carrier, D. Ron, K. W. Kohn, B. Hoffman, D. A. Liebermann, and J. Fornace 1994. The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol. Cell. Biol. 14:2361–2371.
  • Ziemin-van der Poel, S., N. R. McCabe, H. J. Gill, R. Espinosa III, Y. Patel, A. Harden, P. Rubinelli, S. D. Smith, M. M. LeBeau, and J. Rowley 1991. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc. Natl. Acad. Sci. USA 88:10735–10739.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.