5
Views
12
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Developmental Effects of Ectopic Expression of the Glucocorticoid Receptor DNA Binding Domain Are Alleviated by an Amino Acid Substitution That Interferes with Homeodomain Binding

, , , , &
Pages 7106-7122 | Received 10 May 1999, Accepted 24 Jun 1999, Published online: 28 Mar 2023

REFERENCES

  • Abbott, B. D., F. M. McNabb, and J. Lau 1994. Glucocorticoid receptor expression during the development of the embryonic mouse secondary palate. J. Craniofac. Genet. Dev. Biol. 14:87–96.
  • Akimenko, M.-A., and J. Ekker 1995. Anterior duplication of the Sonic hedgehog expression pattern in the pectoral fin buds of zebrafish treated with retinoic acid. Dev. Biol. 170:243–247.
  • Akimenko, M.-A., M. Ekker, J. Wegner, W. Lin, and J. Westerfield 1994. Combinatorial expression of three zebrafish genes related to distal-less: part of a homeobox gene code for the head. J. Neurosci. 14:3475–3486.
  • Beato, M., P. Herrlich, and J. Schutz 1995. Steroid receptors: many actors in search of a plot. Cell 83:851–857.
  • Blackwood, E. M., and J. Eisenman 1995. Identification of protein-protein interactions by lambda gt11 expression cloning. Methods Enzymol. 254:229–240.
  • Blagden, C. S., P. D. Currie, P. W. Ingham, and J. Hughes 1997. Notochord induction of zebrafish slow muscle mediated by Sonic hedgehog. Genes Dev. 11:2163–2175.
  • Blanar, M. A., and J. Rutter 1992. Interaction cloning: identification of a helix-loop-helix zipper protein that interacts with c-Fos. Science 256:1014–1018.
  • Blum, M., J. Gaunt, K. W. Y. Cho, H. Steinbeisser, B. Blumberg, D. Bittner, and J. De Robertis 1992. Gastrulation of the mouse: the role of the homeobox gene goosecoid. Cell 69:1097–1106.
  • Blumberg, B., V. E. Wright, E. M. De Robertis, and J. Cho 1991. Organizer-specific homeobox genes in Xenopus laevis embryos. Science 253:194–196.
  • Bradford, A. P., C. Wasylyk, B. Wasylyk, and J. Gutierrez-Hartmann 1997. Interaction of Ets-1 and the POU-homeodomain protein GHF-1/Pit-1 reconstitutes pituitary-specific gene expression. Mol. Cell. Biol. 17:1065–1074.
  • Bruggemeier, U., M. Kalff, S. Franke, C. Scheidereit, and J. Beato 1991. Ubiquitous transcription factor OTF-1 mediates induction of the MMTV promoter through synergistic interaction with hormone receptors. Cell 64:565–572.
  • Budhram-Mahadeo, V., M. Parker, and J. Latchman 1998. POU transcription factors Brn-3a and Brn-3b interact with the estrogen receptor and differentially regulate transcriptional activity via an estrogen response element. Mol. Cell. Biol. 18:1029–1041.
  • Burns, K., B. Duggan, E. A. Atkinson, K. S. Famulski, M. Nemer, R. C. Bleackley, and J. Michalak 1994. Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature 367:476–480.
  • Chang, C. P., Y. Jacobs, T. Nakamura, N. A. Jenkins, N. G. Copeland, and J. Cleary 1997. Meis proteins are major in vivo DNA binding partners for wild-type but not chimeric Pbx proteins. Mol. Cell. Biol. 17:5679–5687.
  • Chen, C. Y., and J. Schwartz 1996. Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac alpha-actin gene transcription. Mol. Cell. Biol. 16:6372–6384.
  • Cho, K. H. Y., B. Blumberg, H. Steinbeisser, and J. De Robertis 1991. Molecular nature of Spemann’s organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67:1111–1120.
  • Cole, T. J., J. A. Blendy, A. P. Monaghan, K. Krieglstein, W. Schmid, A. Aguzzi, G. Fantuzzi, E. Hummler, K. Unsicker, and J. Schutz 1995. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev. 9:1608–1621.
  • Cole, T. J., J. A. Blendy, W. Schmid, U. Strahle, and J. Schutz 1993. Expression of the mouse glucocorticoid receptor and its role during development. J. Steroid Biochem. Mol. Biol. 47:49–53.
  • Concordet, J.-P., K. E. Lewis, J. W. Moore, L. V. Goodrich, R. L. Johnson, M. P. Scott, and J. Ingham 1996. Spatial regulation of a zebrafish patched homologue reflects the roles of sonic hedgehog and protein kinase A in neural tube and somite patterning. Development 122:2835–2846.
  • Dedhar, S., P. S. Rennie, M. Shago, C. Y. Hagesteijn, H. Yang, J. Filmus, R. G. Hawley, N. Bruchovsky, H. Cheng, R. J. Matusik, and J. Giguère 1994. Inhibition of nuclear hormone receptor activity by calreticulin. Nature 367:480–483.
  • Devoto, S. H., E. Melancon, J. S. Eisen, and J. Westerfield 1996. Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 122:3371–3380.
  • Fan, M. J., and J. Sokol 1997. A role for Siamois in Spemann organizer formation. Development 124:2581–2589.
  • Freedman, L. P., B. F. Luisi, Z. R. Korszun, R. Basavappa, P. B. Sigler, and J. Yamamoto 1988. The function and structure of the metal coordination sites within the glucocorticoid receptor DNA binding domain. Nature 334:543–546.
  • Furthauer, M., C. Thisse, and J. Thisse 1997. A role for FGF-8 in the dorsoventral patterning of the zebrafish gastrula. Development 124:4253–4264.
  • Gao, X., E. Kalkhoven, J. Peterson-Maduro, B. van der Burg, and J. Destree 1994. Expression of the glucocorticoid receptor gene is regulated during early embryogenesis of Xenopus laevis. Biochim. Biophys. Acta 1218:194–198.
  • Gao, X., B. I. Stegeman, P. Lanser, J. G. Koster, and J. Destree 1994. GR transcripts are localized during early Xenopus laevis embryogenesis and overexpression of GR inhibits differentiation after dexamethasone treatment. Biochem. Biophys. Res. Commun. 199:734–741.
  • Gawantka, V., H. Delius, K. Hirschfeld, C. Blumenstock, and J. Niehrs 1995. Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J. 14:6268–6279.
  • Halpern, M. E., R. K. Ho, C. Walker, and J. Kimmel 1993. Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell 75:99–111.
  • Heck, S., M. Kullmann, A. Gast, H. Ponta, H. J. Rahmsdorf, P. Herrlich, and J. Cato 1994. A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1. EMBO J. 13:4087–4095.
  • Horwitz, K. B., T. A. Jackson, D. L. Bain, J. K. Richer, G. S. Takimoto, and J. Tung 1996. Nuclear receptor coactivators and corepressors. Mol. Endocrinol. 10:1167–1177.
  • Imakado, S., J. R. Bickenbach, D. S. Bundman, J. A. Rothnagel, P. S. Attar, X. J. Wang, V. R. Walczak, S. Wisniewski, J. Pote, J. S. Gordon, R. A. Heyman, R. M. Evans, and J. Roop 1995. Targeting expression of a dominant-negative retinoic acid receptor mutant in the epidermis of transgenic mice results in loss of barrier function. Genes Dev. 9:317–329.
  • Izpisua-Belmonte, J. C., E. M. De Robertis, K. G. Storey, and J. Stern 1993. The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell 74:645–659.
  • Joly, J. S., C. Joly, S. Schulte-Merker, H. Boulekbache, and J. Condamine 1993. The ventral and posterior expression of the zebrafish homeobox gene eve1 is perturbed in dorsalized and mutant embryos. Development 119:1261–1275.
  • Kane, D. A., M. Hammerschmidt, M. C. Mullins, H.-M. Maischein, M. Brand, F. J. M. van Eeden, M. Furutani-Seiki, M. Granato, P. Haffter, C.-P. Heisenberg, Y.-J. Jiang, R. N. Kelsh, J. Odenthal, R. M. Warga, and J. Nüsslein-Volhard 1996. The zebrafish epiboly mutants. Development 123:47–55.
  • Kane, D. A., and J. Kimmel 1993. The zebrafish midblastula transition. Development 119:447–456.
  • Kane, D. A., H.-M. Maischein, M. Brand, F. J. M. van Eeden, M. Furutani-Seiki, M. Granato, P. Haffter, M. Hammerschmidt, C.-P. Heisenberg, Y.-J. Jiang, R. N. Kelsh, M. C. Mullins, J. Odenthal, R. M. Warga, and J. Nüsslein-Volhard 1996. The zebrafish early arrest mutants. Development 123:57–66.
  • Karin, M. 1998. New twists in gene regulation by glucocorticoid receptor: is DNA binding dispensable? Cell 93:487–490.
  • Kerppola, T. K., D. Luk, and J. Curran 1993. Fos is a preferential target of glucocorticoid receptor inhibition of AP-1 activity in vitro. Mol. Cell. Biol. 13:3782–3791.
  • Kessler, D. S. 1997. Siamois is required for formation of Spemann’s organizer. Proc. Natl. Acad. Sci. USA 94:13017–13022.
  • Kimmel, C. B., W. W. Ballard, S. R. Kimmel, B. Ullmann, and J. Schilling 1995. Stages of embryonic development of the zebrafish. Dev. Dynamics 203:253–310.
  • Kishimoto, Y., K. H. Lee, L. Zon, M. Hammerschmidt, and J. Schulte-Merker 1997. The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124:4457–4466.
  • Kitraki, E., C. Kittas, and J. Stylianopoulou 1997. Glucocorticoid receptor gene expression during rat embryogenesis. An in situ hybridization study. Differentiation 62:21–31.
  • Klemm, J. D., M. A. Rould, R. Aurora, W. Herr, and J. Pabo 1994. Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell 77:21–32.
  • Krauss, S., J.-P. Concordet, and J. Ingham 1993. A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75:1431–1444.
  • Kristie, T. M., and J. Sharp 1990. Interactions of the Oct-1 POU subdomains with specific DNA sequences and with the HSV alpha-trans-activator protein. Genes Dev. 4:2383–2396.
  • Kutoh, E., P.-E. Stromstedt, and J. Poellinger 1992. Functional interference between the ubiquitous and constitutive octamer transcription factor 1 (OTF-1) and the glucocorticoid receptor by direct protein-protein interaction involving the homeo subdomain of OTF-1. Mol. Cell. Biol. 12:4960–4969.
  • Lai, J.-S., M. A. Cleary, and J. Herr 1992. A single amino acid exchange transfers VP16-induced positive control from the Oct-1 to the Oct-2 homeo domain. Genes Dev. 6:2058–2065.
  • Laudet, V., C. Hanni, J. Coll, F. Catzeflis, and J. Stehelin 1992. Evolution of the nuclear receptor gene superfamily. EMBO J. 11:1003–1013.
  • Laurent, M. N., I. L. Blitz, C. Hashimoto, U. Rothbächer, and J. Cho 1997. The Xenopus homeobox gene Twin mediates Wnt induction of Goosecoid in establishment of Spemann’s organizer. Development 124:4905–4916.
  • Lee, Y., T. Shioi, H. Kasahara, S. M. Jobe, R. J. Wiese, B. E. Markham, and J. Izumo 1998. The cardiac tissue-restricted homeobox protein Csx/Nkx2.5 physically associates with the zinc finger protein GATA4 and cooperatively activates atrial natriuretic factor gene expression. Mol. Cell. Biol. 18:3120–3129.
  • Lemaire, L., T. Roeser, J. C. Izpisúa-Belmonte, and J. Kessel 1997. Segregating expression domains of two goosecoid genes during the transition from gastrulation to neurulation in chick embryos. Development 124:1443–1452.
  • Lemaire, P., N. Garrett, and J. Gurdon 1995. Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81:85–94.
  • Liu, W., A. G. Hillmann, and J. Harmon 1995. Hormone-independent repression of AP-1-inducible collagenase promoter activity by glucocorticoid receptors. Mol. Cell. Biol. 15:1005–1013.
  • Mangelsdorf, D. J., C. Thummel, M. Beato, P. Herrlich, G. Schutz, K. Umesono, B. Blumberg, P. Kastner, M. Mark, P. Chambon, and J. Evans 1995. Overview: the nuclear receptor superfamily: the second decade. Cell 83:835–839.
  • McEwan, I. J., A. P. Wright, and J. Gustafsson 1997. Mechanism of gene expression by the glucocorticoid receptor: role of protein-protein interactions. Bioessays 19:153–160.
  • Mullins, M. C., M. Hammerschmidt, D. A. Kane, J. Odenthal, M. Brand, F. J. M. van Eeden, M. Furutani-Seiki, M. Granato, P. Haffter, C.-P. Heisenberg, Y.-J. Jiang, R. N. Kelsh, and J. Nüsslein-Volhard 1996. Genes establishing dorsoventral pattern formation in the zebrafish embryo: the ventral specifying genes. Development 123:81–93.
  • Nikaido, M., M. Tada, T. Saji, and J. Ueno 1997. Conservation of BMP signaling in zebrafish mesoderm patterning. Mech. Dev. 61:75–88.
  • Okamoto, K., H. Okazawa, A. Okuda, M. Sakai, M. Muramatsu, and J. Hamada 1990. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60:461–472.
  • Onichtchouk, D., V. Gawantka, R. Dosch, H. Delius, K. Hirschfeld, C. Blumenstock, and J. Niehrs 1996. The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling dorsoventral patterning of Xenopus mesoderm. Development 122:3045–3053.
  • Palmieri, S. L., W. Peter, H. Hess, and J. Scholer 1994. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev. Biol. 166:259–267.
  • Pannese, M., C. Polo, M. Andreazzoli, R. Vignali, B. Kablar, G. Barsacchi, and J. Boncinelli 1995. The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development 121:707–720.
  • Pratt, W. B. 1993. The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J. Biol. Chem. 268:21455–21458.
  • Pratt, W. B., and J. Toft 1997. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocrinol. Rev. 18:306–360.
  • Préfontaine, G. G., W. Giffin, M. E. Lemieux, L. Pope, and R. J. G. Haché. Selective binding of steroid hormone receptors to octamer transcription factors determines transcriptional synergism at the MMTV promoter. J. Biol. Chem., in press.
  • Préfontaine, G. G., M. E. Lemieux, W. Giffin, C. Schild-Poulter, L. Pope, E. LaCasse, P. Walker, and J. Haché 1998. Recruitment of octamer transcription factors to DNA by glucocorticoid receptor. Mol. Cell. Biol. 18:3416–3430.
  • Préfontaine, G. G., M. E. Lemieux, and R. J. G. Haché. Unpublished observation.
  • Puzianowska-Kuznicka, M., S. Damjanovski, and J. Shi 1997. Both thyroid hormone and 9-cis retinoic acid receptors are required to efficiently mediate the effects of thyroid hormone on embryonic development and specific gene regulation in Xenopus laevis. Mol. Cell. Biol. 17:4738–4749.
  • Rashbass, P., L. A. Cooke, B. G. Herrmann, and J. Beddington 1991. A cell autonomous function of Brachyury in T/T embryonic stem cell chimaeras. Nature 353:348–351.
  • Reichardt, H. M., K. H. Kaestner, J. Tuckermann, O. Kretz, O. Wessely, R. Bock, P. Gass, W. Schmid, P. Herrlich, P. Angel, and J. Schutz 1998. DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93:531–541.
  • Rosenfeld, M. G. 1991. POU-domain transcription factors: pou-er-ful developmental regulators. Genes Dev. 5:897–907.
  • Rusconi, S., and J. Yamamoto 1987. Functional dissection of the hormone and DNA binding activities of the glucocorticoid receptor. EMBO J. 6:1309–1315.
  • Ruvkun, G., and J. Finney 1991. Regulation of transcription and cell identity by POU domain proteins. Cell 64:475–478.
  • Ryan, A. K., and J. Rosenfeld 1997. POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev. 11:1207–1225.
  • Saitou, M., S. Sugai, T. Tanaka, K. Shimouchi, E. Fuchs, S. Narumiya, and J. Kakizuka 1995. Inhibition of skin development by targeted expression of a dominant-negative retinoic acid receptor. Nature 374:159–162.
  • Sato, N., M. D. Sadar, N. Bruchovsky, F. Saatcioglu, P. S. Rennie, S. Sato, P. H. Lange, and J. Gleave 1997. Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between the androgen receptor and AP-1/c-Jun in the human prostate cancer cell line LNCaP. J. Biol. Chem. 272:17485–17494.
  • Scheinman, R. I., A. Gualberto, C. M. Jewell, J. A. Cidlowski, and J. Baldwin 1995. Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Mol. Cell. Biol. 15:943–953.
  • Schena, M., L. P. Freedman, and J. Yamamoto 1989. Mutations in the glucocorticoid receptor zinc finger region that distinguish interdigitated DNA binding and transcriptional enhancement activities. Genes Dev. 3:1590–1601.
  • Schmidt, J. E., G. Von Dassow, and J. Kimelman 1996. Regulation of dorso-ventral patterning: the ventralising effects of the novel Xenopus homeobox gene Vox. Development 122:1711–1721.
  • Scholer, H. R., G. R. Dressler, R. Balling, H. Rohdewohld, and J. Gruss 1990. Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. EMBO J. 9:2185–2195.
  • Scholer, H. R., S. Ruppert, N. Suzuki, K. Chowdhury, and J. Gruss 1990. New type of POU domain in germ line-specific protein Oct-4. Nature 344:435–439.
  • Schroen, D. J., and J. Brinckerhoff 1996. Inhibition of rabbit collagenase (matrix metalloproteinase-1; MMP-1) transcription by retinoid receptors: evidence for binding of RARs/RXRs to the −77 AP-1 site through interactions with c-Jun. J. Cell. Physiol. 169:320–332.
  • Schulte-Merker, S., M. Hammerschmidt, D. Beuchle, K. W. Cho, E. M. De Robertis, and J. Nüsslein-Volhard 1994. Expression of zebrafish goosecoid and no tail gene products in wild-type and mutant no tail embryos. Development 120:843–852.
  • Schulte-Merker, S., R. K. Ho, B. G. Herrmann, and J. Nüsslein-Volhard 1992. The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development 116:1012–1032.
  • Schulte-Merker, S., F. J. M. van Eeden, M. E. Halpern, C. B. Kimmel, and J. Nüsslein-Volhard 1994. no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120:1009–1015.
  • Sepulveda, J. L., N. Belaguli, V. Nigam, C. Y. Chen, M. Nemer, and J. Schwartz 1998. GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression. Mol. Cell. Biol. 18:3405–3415.
  • Sharpe, C. R., and J. Goldstone 1997. Retinoid receptors promote primary neurogenesis in Xenopus. Development 124:515–523.
  • Shen, W. F., J. C. Montgomery, S. Rozenfeld, J. J. Moskow, H. J. Lawrence, A. M. Buchberg, and J. Largman 1997. AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins. Mol. Cell. Biol. 17:6448–6458.
  • Shen, W. F., S. Rozenfeld, H. J. Lawrence, and J. Largman 1997. The Abd-B-like Hox homeodomain proteins can be subdivided by the ability to form complexes with Pbx1a on a novel DNA target. J. Biol. Chem. 272:8198–8206.
  • Simeone, A., D. Acampora, A. Mallamaci, A. Stornaiuolo, M. R. D’Apice, V. Nigro, and J. Boncinelli 1993. A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J. 12:2735–2747.
  • Simon, K. J., D. A. Grueneberg, and J. Gilman 1997. Protein and DNA contact surfaces that mediate the selective action of the Phox1 homeodomain at the c-fos serum response element. Mol. Cell. Biol. 17:6653–6662.
  • Solnica-Krezel, L., D. L. Stemple, E. Mountcastle-Shah, Z. Rangini, S. C. F. Neuhauss, J. Malicki, A. F. Schier, D. Y. R. Stainier, F. Zwartkruis, S. Abdelilah, and J. Driever 1996. Mutations affecting cell fates and cellular rearrangements during gastrulation in zebrafish. Development 123:67–80.
  • Stachel, S. E., D. J. Grunwald, and J. Myers 1993. Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development 117:1261–1274.
  • Strähle, U., P. Blader, D. Henrique, and J. Ingham 1993. Axial, a zebrafish gene expressed along the developing body axis, shows altered expression in cyclops mutant embryos. Genes Dev. 7:1436–1446.
  • Taira, M., M. Jamrich, P. J. Good, and J. Dawid 1992. The LIM domain-containing homeobox gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. Genes Dev. 6:356–366.
  • Talbot, W. S., B. Trevbarrow, M. E. Halpern, A. E. Melby, G. Farr, J. H. Postlethwait, T. Jowett, C. B. Kimmel, and J. Kimelman 1995. A homeobox gene essential for zebrafish notochord development. Nature 378:150–157.
  • Tanaka, M., and J. Herr 1990. Differential transcriptional activation by Oct-1 and Oct-2: interdependent activation domains induce Oct-2 phosphorylation. Cell 60:375–386.
  • Truss, M., J. Bartsch, A. Schelbert, R. J. G. Haché, and J. Beato 1995. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo. EMBO J. 14:1737–1751.
  • von Dassow, G., J. E. Schmidt, and J. Kimelman 1993. Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeo box gene. Genes Dev. 7:355–366.
  • Wang, J. M., M.-A. Akimenko, and R. J. G. Haché. Unpublished observation.
  • Webb, P., G. N. Lopez, R. M. Uht, and J. Kushner 1995. Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol. Endocrinol. 9:443–456.
  • Wegner, M., D. W. Drolet, and J. Rosenfeld 1993. POU-domain proteins: structure and function of developmental regulators. Curr. Opin. Cell Biol. 5:488–498.
  • Weinberg, E. S., M. L. Allende, C. S. Kelly, A. Abdelhamid, T. Murakami, P. Andermann, O. G. Doerre, D. J. Grunwald, and J. Riggleman 1996. Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. Development 122:271–280.
  • Westerfield, M. 1995. The zebrafish book. University of Oregon Press, Eugene.
  • Wilson, D., G. Sheng, T. Lecuit, N. Dostatni, and J. Desplan 1993. Cooperative dimerization of paired class homeo domains on DNA. Genes Dev. 7:2120–2134.
  • Wilson, V., P. Rashbass, and J. Beddington 1993. Chimeric analysis of T (Brachyury) gene function. Development 117:1321–1331.
  • Yu, Y., W. Li, K. Su, M. Yussa, W. Han, N. Perrimon, and J. Pick 1997. The nuclear hormone receptor Ftz-F1 is a cofactor for the Drosophila homeodomain protein Ftz. Nature 385:552–555.
  • Zerucha, T. 1999. Ph.D. thesis. University of Ottawa, Ottawa, Ontario, Canada.
  • Zhang, X. K., K. N. Wills, M. Husmann, T. Hermann, and J. Pfahl 1991. Novel pathway for thyroid hormone receptor action through interaction with jun and fos oncogene activities. Mol. Cell. Biol. 11:6016–6025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.