19
Views
91
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Regulation of Glycogen Synthase Kinase 3β and Downstream Wnt Signaling by Axin

, , &
Pages 7147-7157 | Received 24 Feb 1999, Accepted 22 Jun 1999, Published online: 28 Mar 2023

REFERENCES

  • Behrens, J., B.-A. Jerchow, M. Wurtele, J. Grimm, C. Asbrand, R. Wirtz, M. Kuhl, D. Wedlich, and J. Birchmeier 1998. Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK-3β. Science 280:596–599.
  • Cadigan, K. M., and J. Nusse 1997. Wnt signaling: a common theme in animal development. Genes Dev. 11:3286–3305.
  • Cook, D., M. J. Fry, K. Hughes, R. Sumathipala, J. R. Woodgett, and J. Dale 1996. Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C. EMBO J. 15:4526–4536.
  • Dominguez, I., K. Itoh, and J. Sokol 1995. Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc. Natl. Acad. Sci. USA 92:8498–8502.
  • Emily-Fenouil, F., C. Ghiglione, G. Lhomond, T. Lepage, and J. Gache 1998. GSK-3 beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo. Development 125:2489–2498.
  • Fields, S., and J. Song 1989. A novel genetic system to detect protein-protein interactions. Nature 340:245–247.
  • Gluecksohn-Schoenheimer, S. 1949. The effects of a lethal mutation responsible for duplications and twinning in mouse embryos. J. Exp. Zool. 110:47–76.
  • Goyette, M. C., K. Cho, C. L. Fasching, D. B. Levy, K. W. Kinzler, C. Paraskeva, B. Vogelstein, and J. Stanbridge 1992. Progression of colorectal cancer is associated with multiple tumor suppressor gene defects, but inhibition of tumorigenicity is accomplished by correction of any single defect via chromosome transfer. Mol. Cell. Biol. 12:1387–1395.
  • Greenberg, S. G., P. Davies, J. D. Schein, and J. Binder 1992. Hydrofluoric acid-treated tau PHF proteins display the same biochemical properties as normal tau. J. Biol. Chem. 267:564–569.
  • Harper, J. W., G. R. Adami, N. Wei, K. Keyomarski, and J. Elledge 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816.
  • Hart, M. J., R. Santos, I. Albert, B. Rubinfeld, and J. Polakis 1998. Downregulation of β-catenin by human axin and its association with the APC tumor suppressor, β-catenin, and GSK3B. Curr. Biol. 8:573–581.
  • Harwood, A. J., S. E. Plyte, J. Woodgett, H. Strutt, and J. Kay 1995. Glycogen synthase kinase 3 regulates cell fate in Dictyostelium. Cell 80:139–148.
  • He, X., J.-P. Saint-Jeannet, J. R. Woodgett, H. E. Varmus, and J. Dawid 1995. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374:617–622.
  • Heasman, J. 1997. Patterning the Xenopus blastula. Development 124:4179–4191.
  • Hedgepeth, C., L. Conrad, Z. Zhang, H. Huang, V. Lee, and J. Klein 1997. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev. Biol. 185:82–91.
  • Hedgepeth, C. M., M. A. Deardorff, and J. Klein 1999. Xenopus axin interacts with glycogen synthase kinase-3 beta and is expressed in the anterior midbrain. Mech. Dev. 80:147–151.
  • Hong, M., J. Chen, P. Klein, and J. Lee 1997. Lithium reduces tau phosphorylation by direct and reversible inhibition of glycogen synthase kinase-3 in cultured human neurons. J. Biol. Chem. 272:25326–25332.
  • Hoshi, M., A. Takashima, K. Noguchi, M. Murayama, M. Sato, S. Kondo, Y. Saitoh, K. Ishiguro, T. Hoshino, and J. Imahori 1996. Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3B in brain. Proc. Natl. Acad. Sci. USA 93:2719–2723.
  • Hsu, W., L. Zeng, and J. Costantini 1999. Identification of a domain of axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain. J. Biol. Chem. 274:3439–3445.
  • Ikeda, S., S. Kishida, H. Yamamoto, H. Murai, S. Koyama, and J. Kikuchi 1998. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J. 17:1371–1384.
  • Itoh, K., V. E. Krupnik, and J. Sokol 1998. Axis determination in Xenopus involves biochemical interactions of axin, glycogen synthase kinase 3 and B-catenin. Curr. Biol. 8:591–594.
  • Itoh, K., T. Tang, B. Neel, and J. Sokol 1995. Specific modulation of ectodermal cell fates in Xenopus embryos by glycogen synthase kinase. Dev. Suppl. 121:3979–3988.
  • Jacobs-Cohen, R. J., M. Spiegelman, J. C. Cookingham, and J. Bennett 1984. Knobbly, a new dominant mutation in the mouse that affects embryonic ectoderm organization. Genet. Res. 43:43–50.
  • Kao, K. R., Y. Masui, and J. Elinson 1986. Lithium-induced respecification of pattern in Xenopus laevis embryos. Nature 322:371–373.
  • Kishida, S., H. Yamamoto, S. Ikeda, M. Kishida, I. Sakamoto, S. Koyama, and J. Kikuchi 1998. Axin, a negative regulator of the Wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of β-catenin. J. Biol. Chem. 273:10823–10826.
  • Klein, P. S. Unpublished data.
  • Klein, P. S., and J. Melton 1996. A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA 93:8455–8459.
  • Larabell, C. A., M. Torres, B. A. Rowning, C. Yost, J. R. Miller, M. Wu, D. Kimelman, and J. Moon 1997. Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway. J. Cell Biol. 136:1123–1136.
  • Logan, C. Y., J. R. Miller, M. J. Ferkowicz, and J. McClay 1999. Nuclear β-catenin is required to specify vegetal cell fates in the sea urchin embryo. Development 126:345–357.
  • Lucas, F. R., and J. Salinas 1997. WNT-7a induces axonal remodeling and increases synapsin I levels in cerebellar neurons. Dev. Biol. 192:31–44.
  • McCrea, P. D., W. M. Brieher, and J. Gumbiner 1993. Induction of a secondary body axis in Xenopus by antibodies to beta-catenin. J. Cell Biol. 123:477–484.
  • McMahon, A. P., and J. Moon 1989. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58:1075–1084.
  • Miller, J. R., and J. Moon 1996. Signal transduction through β-catenin and specification of cell fate during embryogenesis. Genes Dev. 10:2527–2539.
  • Miller, J. R., and J. Moon 1996. Signal transduction through beta-catenin and specification of cell fate during embryogenesis. Genes Dev. 10:2527–2539.
  • Mitchell, A. P. 1994. Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol. Rev. 58:56–70.
  • Munoz-Montano, J. R., F. J. Moreno, J. Avila, and J. Diaz-Nido 1997. Lithium inhibits Alzheimer’s disease-like tau protein phosphorylation in neurons. FEBS Lett. 411:183–188.
  • Otvos, L., L. Feiner, E. Lang, G. I. Szendrei, M. Goedert, and J. Lee 1994. Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 396 and 404. J. Neurosci. Res. 39:669–673.
  • Perry, W. L., T. J. Vasicek, J. J. Lee, J. M. Rossi, L. Zeng, T. Zhang, S. M. Tilghman, and J. Costantini 1995. Phenotypic and molecular analysis of a transgenic insertional allele of the mouse Fused locus. Genetics 141:321–332.
  • Pierce, S. B., and J. Kimelman 1995. Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3. Development 121:755–765.
  • Plyte, S. E., K. Hughes, E. Nikolakaki, B. J. Pulverer, and J. Woodgett 1992. Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim. Biophys. Acta 1114:147–162.
  • Popperl, H., C. Schmidt, V. Wilson, C. R. Hume, J. Dodd, R. Krumlauf, and J. Beddington 1997. Misexpression of Cwnt8C in the mouse induces an ectopic embryonic axis and causes a truncation of the anterior neuroectoderm. Development 124:2997–3005.
  • Rubinfeld, B., I. Albert, E. Porfiri, C. Fiol, S. Munemitsu, and J. Polakis 1996. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272:1023–1026.
  • Rubinfeld, B., B. Souza, I. Albert, O. Muller, S. H. Chamberlain, F. R. Masiarz, S. Munemitsu, and J. Polakis 1993. Association of the APC gene product with beta-catenin. Science 262:1731–1734.
  • Sakanaka, C., J. B. Weiss, and J. Williams 1998. Bridging of β-catenin and glycogen synthase kinase-3β by Axin and inhibition of β-catenin-mediated transcription. Proc. Natl. Acad. Sci. USA 95:3020–3023.
  • Smith, L. D., W. Xu, and J. Varnold 1994. Oogenesis and oocyte isolation. Methods Cell Biol. 36:45–58.
  • Stambolic, V., L. Ruel, and J. Woodgett 1996. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol. 6:1664–1668.
  • Vasicek, T. J., L. Zeng, X.-J. Guan, T. Zhang, F. Constantini, and J. Tilghman 1997. Two dominant mutations in the mouse Fused gene are the result of transposon insertions. Genetics 147:777–786.
  • Wikramanayake, A. H., L. Huang, and J. Klein 1998. β-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo. Proc. Natl. Acad. Sci. USA 95:9343–9348.
  • Woodgett, J. R. 1991. A common denominator linking glycogen metabolism, nuclear oncogenes and development. Trends Biochem. Sci. 16:177–181.
  • Yost, C., G. H. Farr, S. B. Pierce, D. M. Ferkey, M. M. Chen, and J. Kimelman 1998. GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell 93:1031–1041.
  • Yost, C., M. Torres, J. Miller, E. Huang, D. Kimelman, and J. Moon 1996. The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10:1443–1454.
  • Zeng, L., F. Fagotto, T. Zhang, W. Hsu, T. J. Vasicek, W. L. Perry, J. J. Lee, S. M. Tilghman, B. M. Gumbiner, and J. Costantini 1997. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90:181–192.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.