26
Views
142
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Physical and Functional Interactions between Cellular Retinoic Acid Binding Protein II and the Retinoic Acid-Dependent Nuclear Complex

, , , , , , & show all
Pages 7158-7167 | Received 08 Mar 1999, Accepted 04 Jul 1999, Published online: 28 Mar 2023

REFERENCES

  • Allenby, G., M. T. Bocquel, M. Saunders, S. Kazmer, J. Speck, M. Rosenberg, A. Lovey, P. Kastner, J. F. Grippo, P. Chambon, and J. Levin 1993. Retinoic acid receptors and retinoic X receptors: interactions with endogenous retinoic acids. Proc. Natl. Acad. Sci. USA 90:30–34.
  • Aström, A., U. Pettersson, P. Chambon, and J. Voorhees 1994. Retinoic acid induction of human cellular retinoic acid-binding protein-II gene transcription is mediated by retinoic acid receptor-retinoid X receptor heterodimers bound to one far upstream retinoic acid-responsive element with 5-base pair spacing. J. Biol. Chem. 269:22334–22339.
  • Baniahmad, C., Z. Nawaz, A. Baniahmad, M. A. G. Gleeson, M. Tsai, and J. O’Malley 1995. Enhancement of human estrogen receptor activity by SPT6: a potential coactivator. Mol. Endocrinol. 9:34–39.
  • Berkenstam, A., M. del Mar Vivanco Ruiz, D. Barettino, M. Horikoshi, and J. Stunnenberg 1992. Cooperativity in transactivation between retinoic acid receptor and TFIID requires an activity analogous to E1A. Cell 69:401–412.
  • Blanco, J. C. G., S. Minucci, J. Lu, X. J. Yang, K. K. Walker, H. Chen, R. M. Evans, Y. Nakatani, and J. Ozato 1998. The histone acetylase PCAF is a nuclear receptor coactivator. Genes Dev. 12:1638–1651.
  • Boylan, J. F., and J. Gudas 1991. Overexpression of the cellular retinoic acid binding protein-I (CRABPI) results in differentiation-specific gene expression in F9 teratocarcinoma cells. J. Cell Biol. 112:965–979.
  • Carpentier, A., N. Balitrand, C. Rochette-Egly, B. Shroot, L. Degos, and J. Chomienne 1997. Distinct sensitivity of neuroblastoma cells for retinoid receptor agonists: evidence for functional receptor heterodimers. Oncogene 15:1805–1813.
  • Cavaillès, V., S. Dauvois, F. L’Horset, G. Lopez, S. Hoare, P. J. Kushner, and J. Parker 1995. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 14:3741–3751.
  • Chambon, P. 1996. A decade of molecular biology of retinoic acid receptors. FASEB J. 10:940–954.
  • Chen, Z., F. Guidez, P. Rousselot, A. Agadir, S. J. Chen, Z. Y. Wang, L. Degos, A. Zelent, S. Waxman, and J. Chomienne 1994. PLZF-RARα fusion proteins generated from the variant t(11;17)(q23;21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors. Proc. Natl. Acad. Sci. USA 91:1178–1182.
  • Chomienne, C., N. Balitrand, P. Ballerini, S. Castaigne, H. de Thé, and J. Degos 1991. All-trans retinoic acid modulates the retinoic acid receptor alpha in promyelocytic cells. J. Clin. Investig. 88:2150–2154.
  • Chomienne, C., P. Fenaux, and J. Degos 1996. Retinoid differentiation therapy in promyelocytic leukemia. FASEB J. 10:1025–1030.
  • Cornic, M., L. Delva, N. Balitrand, F. Guidez, J. M. Micléa, A. Delmer, F. Teillet, P. Fenaux, S. Castaigne, L. Degos, and J. Chomienne 1992. Induction of retinoic acid-binding protein in normal and malignant human myeloid cells by retinoic acid in acute promyelocytic leukemia patients. Cancer Res. 52:3329–3334.
  • Delva, L., M. Cornic, N. Balitrand, F. Guidez, J. M. Micléa, A. Delmer, F. Teillet, P. Fenaux, S. Castaigne, L. Degos, and J. Chomienne 1993. Resistance to all-trans retinoic acid (ATRA) therapy in relapsing acute promyelocytic leukemia: study of in vitro ATRA sensitivity and cellular retinoic acid binding protein levels in leukemic cells. Blood 82:2175–2181.
  • Delva, L., J. N. Bastie, R. Kraiba, F. Guidez, N. Balitrand, M. P. Gaub, P. Chambon, C. Rochette-Egly, and J. Chomienne 1996. CRABPII is part of a nuclear complex which binds to retinoic acid response elements in hematopoietic cells. Blood 88:48a (Abstract 180-I.)
  • Dollé, P., E. Ruberte, P. Kastner, M. Petkovich, C. M. Stoner, L. J. Gudas, and J. Chambon 1989. Differential expression of genes encoding α, β, and γ retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature 342:702–705.
  • Durand, B., M. Saunders, P. Leroy, M. Leid, and J. Chambon 1992. All-trans and 9-cis retinoic acid induction of mouse CRABPII gene transcription is mediated by RAR/RXR heterodimers bound to DR1 and DR2 repeated motifs. Cell 71:73–85.
  • Fawcett, D., P. Pasceri, R. Fraser, M. Colbert, J. Rossant, and J. Giguère 1995. Postaxial polydactyly in forelimbs of CRABP-mutant mice. Dev. Suppl. 121:671–679.
  • Fiorella, P. D., V. Giguère, and J. Napoli 1993. Expression of cellular retinoic acid-binding protein (type II) in Escherichia coli: characterization and comparison to cellular retinoic acid-binding protein (type I). J. Biol. Chem. 268:21545–21552.
  • Fogh, K., J. J. Voorhees, and J. Aström 1993. Expression, purification, and binding properties of human cellular retinoic acid binding protein type I and type II. Arch. Biochem. Biophys. 300:751–755.
  • Fraser, R. A., D. J. Heard, S. Adam, A. C. Lavigne, B. Le Douarin, L. Tora, R. Losson, C. Rochette-Egly, and J. Chambon 1998. The putative cofactor TIF1α is a protein kinase that is hyperphosphorylated upon interaction with liganded nuclear receptors. J. Biol. Chem. 273:16199–16204.
  • Gaub, M. P., Y. Lutz, N. P. Ghyselinck, I. Scheuer, V. Pfister, P. Chambon, and J. Rochette-Egly 1998. Nuclear detection of cellular retinoic acid binding proteins I and II with new antibodies. J. Histochem. Cytochem. 46:1103–1111.
  • Gazith, J., J. Eustache, O. Watts, M. T. Cavey, and J. Shroot 1998. An improved assay procedure and a new chemically stable ligand for retinoic acid binding protein. Anal. Biochem. 88:238–247.
  • Giguère, V. 1994. Retinoic acid receptors and cellular retinoic acid binding proteins: complex interplay in retinoid signaling. Endocr. Rev. 15:61–79.
  • Glass, C., D. W. Rose, and J. Rosenfeld 1997. Nuclear receptor coactivators. Curr. Opin. Cell Biol. 9:222–232.
  • Guilbaud, N. F., N. Gas, M. A. Dupont, and J. Valette 1990. Effects of differentiation-inducing agents on maturation of human MCF-7 breast cancer cells. J. Cell. Physiol. 145:162–172.
  • Heery, D. M., E. Kalkhoven, S. Hoare, and J. Parker 1997. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736.
  • Ing, N. H., J. M. Beekman, S. Y. Tsai, M. J. Tsai, and J. O’Malley 1992. Members of the steroid hormone receptor superfamily interact with TFIIB (S300-II). J. Biol. Chem. 267:17617–17623.
  • Jacq, X., C. Brou, Y. Lutz, I. Davidson, P. Chambon, and J. Tora 1994. Human TAFII30 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor. Cell 79:107–117.
  • Jing, Y., S. Waxman, and J. Mira-y-Lopez 1997. The cellular retinoic acid binding protein II is a positive regulator of retinoic acid signalling in breast cancer cells. Cancer Res. 57:1668–1672.
  • Kadonaga, J. T. 1998. Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92:307–313.
  • Lampron, C., C. Rochette-Egly, P. Gorry, P. Dollé, M. Mark, T. Lufkin, M. LeMeur, and J. Chambon 1995. Mice deficient in cellular retinoic acid binding protein II (CRABPII) or in both CRABPI and CRABPII are essentially normal. Development 121:539–548.
  • Le Douarin, B., C. Zechel, J. Garnier, Y. Lutz, L. Tora, B. Pierrat, D. Heery, H. Gronemeyer, P. Chambon, and J. Losson 1995. The N-terminal part of TIF1, a putative mediator of the ligand dependent activation function (AF2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J. 14:2020–2033.
  • Mangesldorf, D. J., and J. Evans 1995. The RXR heterodimers and orphan receptors. Cell 83:841–850.
  • Martinez-Balbas, M. A., A. J. Bannister, K. Martin, P. Haus-Seuffert, M. Meisterernst, and J. Kouzarides 1998. The acetyltransferase activity of CBP stimulates transcription. EMBO J. 17:2886–2893.
  • Nagpal, S., S. Friant, H. Nakshatri, and J. Chambon 1993. RARs and RXRs: evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization in vivo. EMBO J. 12:2349–2360.
  • Nagy, L., H.-Y. Kao, D. Chakravarti, R. J. Lin, C. A. Hassig, D. E. Ayer, S. L. Schreiber, and J. Evans 1997. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380.
  • Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and J. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959.
  • Ong, D., M. Newcomer, F. Chytil 1994. Cellular retinoid-binding proteins, p. 283–317 In M. B. Sporn et al. (ed.), Retinoids, 2nd ed. Raven, New York, N.Y.
  • Rochette-Egly, C., S. Adam, M. Rossignol, J. M. Egly, and J. Chambon 1997. Stimulation of RARα activation function AF-1 through binding to the general transcription factor TFIIH and phosphorylation by cdk7. Cell 90:97–107.
  • Rochette-Egly, C., Y. Lutz, V. Pfister, S. Heyberger, I. Scheuer, P. Chambon, and J. Gaub 1994. Detection of retinoid X receptors using specific monoclonal and polyclonal antibodies. Biochem. Biophys. Res. Commun. 204:525–536.
  • Roman, S. D., C. L. Clarke, R. E. Hall, I. E. Alexander, and J. Sutherland 1992. Expression and regulation of retinoic acid receptors in human breast cancers. Cancer Res. 52:2236–2242.
  • Rousselot, P., B. Hardas, A. Patel, F. Guidez, J. Gäken, S. Castaigne, A. Dejean, H. de Thé, L. Degos, F. Farzaneh, and J. Chomienne 1994. The PML-RARα gene product of the t(15;17) translocation inhibits retinoic acid-induced granulocytic differentiation and mediated transactivation in human myeloid cells. Oncogene 9:545–551.
  • Shibakura, M., T. Koyama, T. Saito, K. Shudo, N. Miyasaka, R. Kamiyama, and J. Hirosawa 1997. Anticoagulant effects of synthetic retinoids mediated via different receptors on human leukemia and umbilical vein endothelial cells. Blood 90:1545–1551.
  • Tora, L., J. White, C. Brou, D. Tasset, N. Webster, E. Scheer, and J. Chambon 1989. The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59:477–487.
  • Torchia, J., C. K. Glass, and J. Rosenfeld 1998. Co-activators and co-repressors in the integration of transcriptional responses. Curr. Opin. Cell Biol. 10:373–383.
  • Umesono, K., V. Giguère, C. Glass, M. G. Rosenfeld, and J. Evans 1988. Retinoic acid and thyroid hormone induce gene expression through a common responsive element. Nature 336:185–188.
  • Venepally, P., L. G. Reddy, and J. Sani 1996. Analysis of the effects of CRABPI expression on the RA-induced transcription mediated by retinoid receptors. Biochemistry 35:9974–9982.
  • Voegel, J. J., J. S. Heine, M. Tini, V. Vivat, P. Chambon, and J. Gronemeyer 1998. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J. 17:507–519.
  • vom Baur, E., C. Zechel, D. Heery, M. J. Heine, J. M. Garnier, V. Vivat, B. Le Douarin, H. Gronemeyer, P. Chambon, and J. Losson 1993. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J. 15:110–124.
  • Wang, Z. G., L. Delva, M. Gaboli, R. Rivi, M. Giorgio, C. Cordon-Cardo, F. Grosveld, and J. Pandolfi 1998. Role of PML in cell growth and the retinoic acid pathway. Science 279:1547–1551.
  • Webster, N. J., S. Green, D. Tasset, M. Ponglikitmongkol, and J. Chambon 1989. The transcriptional activation function located in the hormone-binding domain of the human oestrogen receptor is not encoded in a single exon. EMBO J. 8:1441–1446.
  • Westin, S., R. Kurokawa, R. T. Nolte, G. B. Wisely, E. M. McInerney, D. W. Rose, M. V. Milburn, M. G. Rosenfeld, and J. Glass 1998. Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators. Nature 395:199–202.
  • Xu, J., Y. Qiu, F. J. DeMayo, S. Y. Tsai, M. J. Tsai, and J. O’Malley 1998. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279:1922–1925.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.