6
Views
47
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

NRIF3 Is a Novel Coactivator Mediating Functional Specificity of Nuclear Hormone Receptors

, , , , &
Pages 7191-7202 | Received 25 Feb 1999, Accepted 16 Jul 1999, Published online: 28 Mar 2023

REFERENCES

  • Abagyan, R. A., M. M. Totrov, and J. Kuznetsov 1994. ICM: a new method for structure modeling and design: applications to docking and structure prediction from the distorted native conformation. J. Comp. Chem. 15:488–506.
  • Anzick, S. L., J. Kononen, R. L. Walker, D. O. Azorsa, M. M. Tanner, X. Y. Guan, G. Sauter, O. P. Kallioniemi, J. M. Trent, and J. Meltzer 1997. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277:965–968.
  • Arany, Z., D. Newsome, E. Oldread, D. M. Livingston, and J. Eckner 1995. A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 374:81–84.
  • Arias, J., A. S. Alberts, P. Brindle, F. X. Claret, T. Smeal, M. Karin, J. Feramisco, and J. Montminy 1994. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370:226–229.
  • Au-Fliegner, M., E. Helmer, J. Casanova, B. M. Raaka, and J. Samuels 1993. The conserved ninth C-terminal heptad in thyroid hormone and retinoic acid receptors mediates diverse responses by affecting heterodimer but not homodimer formation. Mol. Cell. Biol. 13:5725–5737.
  • Baniahmad, A., X. Leng, T. P. Burris, S. Y. Tsai, M.-J. Tsai, and J. O’Malley 1995. The τ4 activation domain of the thyroid hormone receptor is required for release of a putative corepressor(s) necessary for transcriptional silencing. Mol. Cell. Biol. 15:76–86.
  • Bannister, A. J., and J. Kouzarides 1995. CBP-induced stimulation of c-Fos activity is abrogated by E1A. EMBO J. 14:4758–4762.
  • Bannister, A. J., and J. Kouzarides 1996. The CBP co-activator is a histone acetyltransferase. Nature 384:641–643.
  • Barettino, D., M. D. M. V. Ruiz, and J. Stunnenberg 1994. Characterization of the ligand-dependent transactivation domain of thyroid hormone receptor. EMBO J. 13:3039–3049.
  • Bhattacharya, S., R. Eckner, S. Grossman, E. Oldread, Z. Arany, A. D’Andrea, and J. Livingston 1996. Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha. Nature 383:344–347.
  • Blanco, J. C. G., S. Minucci, J. Lu, X. J. Yang, K. K. Walker, H. Chen, R. M. Evans, V. Nakatani, and J. Ozato 1998. The histone acetylase PCAF is a nuclear receptor coactivator. Genes Dev. 12:1638–1651.
  • Casanova, J., E. Helmer, S. Selmi-Ruby, J.-S. Qi, M. Au-Fliegner, V. Desai-Yajnik, N. Koudinova, F. Yarm, B. M. Raaka, and J. Samuels 1994. Functional evidence for ligand-dependent dissociation of thyroid hormone and retinoic acid receptors from an inhibitory cellular factor. Mol. Cell. Biol. 14:5756–5765.
  • Chakravarti, D., V. J. LaMorte, M. C. Nelson, T. Nakajima, I. G. Schulman, H. Juguilon, M. Montminy, and J. Evans 1996. Role of CBP/P300 in nuclear receptor signalling. Nature 383:99–103.
  • Chen, H., R. J. Lin, R. L. Schiltz, D. Chakravarti, A. Nash, L. Nagy, M. L. Privalsky, Y. Nakatani, and J. Evans 1997. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90:569–580.
  • Chen, J. D., and J. Evans 1995. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457.
  • Chrivia, J. C., R. P. Kwok, N. Lamb, M. Hagiwara, M. R. Montminy, and J. Goodman 1993. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365:855–859.
  • Conneely, O. M., W. P. Sullivan, D. O. Toft, M. Birnbaumer, R. G. Cook, B. L. Maxwell, T. Zaraucko-Schulz, G. L. Greene, W. T. Schraeder, and J. O’Malley 1986. Molecular cloning of the chicken progesterone receptor. Science 233:767–770.
  • Cormack, B. P., R. H. Valdivia, and J. Falkow 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38.
  • Darimont, B. D., R. L. Wagner, J. W. Apriletti, M. R. Stallcup, P. J. Kushner, D. Baxter, R. J. Fletterick, and J. Yamamoto 1998. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 12:3343–3356.
  • Desai-Yajnik, V., and J. Samuels 1993. The NF-κB and Sp1 DNA motifs of the human immunodeficiency virus type 1 long terminal repeat function as novel thyroid hormone response elements. Mol. Cell. Biol. 13:5057–5069.
  • Durand, B., M. Saunders, C. Gausdon, B. Roy, R. Losson, and J. Chambon 1994. Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor: presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBO J. 13:5370–5382.
  • Eigenthaler, M., L. Hofferer, S. J. Shattil, and J. Ginsberg 1997. A conserved sequence motif in the integrin β3 cytoplasmic domain is required for its specific interaction with β3-endonexin. J. Biol. Chem. 272:7693–7698.
  • Feng, W., R. C. Ribeiro, R. L. Wagner, H. Nguyen, J. W. Apriletti, R. J. Fletterick, J. D. Baxter, P. J. Kushner, and J. West 1998. Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science 280:1747–1749.
  • Fondell, J. D., H. Ge, and J. Roeder 1996. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl. Acad. Sci. USA 93:8329–8333.
  • Forman, B. M., J. Casanova, B. M. Raaka, J. Ghysdael, and J. Samuels 1992. Half-site spacing and orientation determines whether thyroid hormone and retinoic acid receptors and related factors bind to DNA response elements as monomers, homodimers, or heterodimers. Mol. Endocrinol. 6:429–442.
  • Giguere, V., E. S. Ong, P. Segui, and J. Evans 1987. Identification of a receptor for the morphogen retinoic acid. Nature 330:624–629.
  • Glass, C. K., D. W. Rose, and J. Rosenfeld 1997. Nuclear receptor coactivators. Curr. Opin. Cell Biol. 9:222–232.
  • Gu, W., X. L. Shi, and J. Roeder 1997. Synergistic activation of transcription by CBP and p53. Nature 387:819–823.
  • Gyuris, J., E. Golemis, H. Chertkov, and J. Brent 1993. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75:791–803.
  • Hadzic, E., V. Desai-Yajnik, E. Helmer, S. Guo, S. Wu, N. Koudinova, J. Casanova, B. M. Raaka, and J. Samuels 1995. A 10-amino-acid sequence in the N-terminal A/B domain of thyroid hormone receptor α is essential for transcriptional activation and interaction with the general transcription factor TFIIB. Mol. Cell. Biol. 15:4507–4517.
  • Hanstein, B., R. Eckner, J. DiRenzo, S. Halachmi, H. Liu, B. Searcy, R. Kurokawa, and J. Brown 1996. p300 is a component of an estrogen receptor coactivator complex. Proc. Natl. Acad. Sci. USA 93:11540–11545.
  • Heery, D. M., E. Kalkhoven, S. Hoare, and J. Parker 1997. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736.
  • Heinzel, T., R. M. Lavinsky, T. M. Mullen, M. Soderstrom, C. D. Laherty, J. Torchia, W. M. Yang, G. Brard, S. D. Ngo, J. R. Davie, E. Seto, R. N. Eisenman, D. W. Rose, C. K. Glass, and J. Rosenfeld 1997. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387:43–48.
  • Hong, H., K. Kohli, M. Garabedian, and J. Stallcup 1997. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol. Cell. Biol. 17:2735–2744.
  • Hong, H., K. Kohli, A. Trivedi, D. L. Johnson, and J. Stallcup 1996. GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc. Natl. Acad. Sci. USA 93:4948–4952.
  • Horlein, A. J., A. M. Naar, T. Heinzel, J. Torchia, B. Gloss, R. Kurokawa, A. Ryan, Y. Kamil, M. Soderstrom, C. K. Glass, and J. Rosenfeld 1995. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404.
  • Kamei, Y., L. Xu, T. Heinzel, J. Torchia, R. Kurokawa, B. Gloss, S.-C. Lin, R. A. Heyman, D. W. Rose, C. K. Glass, and J. Rosenfeld 1996. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:403–414.
  • Korzus, E., J. Torchia, D. W. Rose, L. Xu, R. Kurokawa, E. M. McInerney, T. M. Mullen, C. K. Glass, and J. Rosenfeld 1998. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279:703–707.
  • Kurokawa, R., J. DiRenzo, M. Boehm, J. Sugarman, B. Glass, M. G. Rosenfeld, R. A. Heyman, and J. Glass 1994. Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature 371:528–531.
  • Kwok, R. P., J. R. Lundblad, J. C. Chrivia, J. P. Richards, H. P. Bachinger, R. G. Brennan, S. G. Roberts, M. R. Green, and J. Goodman 1994. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370:223–226.
  • Lanz, R. B., N. J. McKenna, S. A. Onate, U. Albrecht, J. Wong, S. Y. Tsai, M. J. Tsai, and J. O’Malley 1999. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97:17–27.
  • Lee, J. W., H.-S. Choi, J. Gyuris, R. Brent, and J. Moore 1995. Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol. Endocrinol. 9:243–254.
  • Leng, X., J. Blanco, S. Y. Tsai, K. Ozato, B. W. O’Malley, and J. Tsai 1995. Mouse retinoid X receptor contains a separable ligand-binding and transactivation domain in its E region. Mol. Cell. Biol. 15:255–263.
  • Li, D., and H. H. Samuels. Unpublished data.
  • Li, H., P. J. Gomes, and J. Chen 1997. RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc. Natl. Acad. Sci. USA 94:8479–8484.
  • Lill, N. L., S. R. Grossman, D. Ginsberg, J. DeCaprio, and J. Livingston 1997. Binding and modulation of p53 by p300/CBP coactivators. Nature 387:823–827.
  • Lundblad, J. R., R. P. Kwok, M. E. Laurance, M. L. Harter, and J. Goodman 1995. Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 374:85–88.
  • MacDonald, P. N., D. R. Dowd, S. Nakajima, M. A. Galligan, M. C. Reeder, C. A. Haussler, K. Ozato, and J. Haussler 1993. Retinoid X receptors stimulate and 9-cis retinoic acid inhibits 1,25-dihydroxyvitamin D3-activated expression of the rat osteocalcin gene. Mol. Cell. Biol. 13:5907–5917.
  • Mangelsdorf, D. J., U. Borgmeyer, R. A. Heyman, J. Y. Zhou, E. S. Ong, A. E. Oro, A. Kakizuka, and J. Evans 1992. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev. 6:329–344.
  • Mangelsdorf, D. J., and J. Evans 1995. The RXR heterodimers and orphan receptors. Cell 83:841–850.
  • Mangelsdorf, D. J., E. S. Ong, J. A. Dyck, and J. Evans 1990. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345:224–229.
  • Mangelsdorf, D. J., C. Thummel, M. Beato, P. Herrlich, G. Schutz, K. Umesono, B. Blumberg, P. Kastner, M. Mark, P. Chambon, and J. Evans 1995. The nuclear receptor superfamily: the second decade. Cell 83:835–839.
  • McInerney, E. M., D. W. Rose, S. E. Flynn, S. Westin, T. M. Mullen, A. Krones, J. Inostroza, J. Torchia, R. T. Nolte, N. Assa-Munt, M. V. Milburn, C. K. Glass, and J. Rosenfeld 1998. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev. 12:3357–3368.
  • Miesfeld, R., S. Rusconi, P. J. Godowski, B. A. Maler, S. Okret, A.-C. Wikstrom, J.-A. Gustafsson, and J. Yamamoto 1986. Genetic complementation of a glucocorticoid receptor deficiency by expression of cloned receptor cDNA. Cell 46:389–399.
  • Nagpal, S., S. Friant, H. Nakshatri, and J. Chambon 1993. RARs and RXRs: evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization in vivo. EMBO J. 12:2349–2360.
  • Nagy, L., H. V. Kao, D. Chakravarti, R. J. Lin, C. A. Hassig, D. E. Ayer, S. L. Schreiber, and J. Evans 1997. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380.
  • Nolte, R. T., G. B. Wisely, S. Westin, J. E. Cobb, M. H. Lambert, R. Kurokawa, M. G. Rosenfeld, T. M. Willson, C. K. Glass, and J. Milburn 1998. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 395:137–143.
  • Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and J. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959.
  • Onate, S. A., S. Y. Tsai, M.-J. Tsai, and J. O’Malley 1995. Sequence and characterization of a coactivator of the steroid hormone receptor superfamily. Science 270:1354–1357.
  • Orphanides, G., T. Lagrange, and J. Reinberg 1996. The general transcription factors of RNA polymerase II. Genes Dev. 10:2657–2683.
  • Puigserver, P., Z. Wu, C. W. Park, R. Graves, M. Wright, and J. Spiegelman 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839.
  • Qi, J.-S., V. Desai-Yajnik, M. E. Greene, B. M. Raaka, and J. Samuels 1995. The ligand binding domains of the thyroid hormone/retinoid receptor gene subfamily function in vivo to mediate heterodimerization, gene silencing, and transactivation. Mol. Cell. Biol. 15:1817–1825.
  • Rachez, C., Z. Suldan, J. Ward, C. P. Chang, D. Burakov, H. Erdjument-Bromage, P. Tempst, and J. Freedman 1998. A novel protein complex that interacts with the vitamin D3 receptor in a ligand-dependent manner and enhances VDR transactivation in a cell-free system. Genes Dev. 12:1787–1800.
  • Renaud, J.-P., N. Rochel, M. Ruff, V. Vivat, P. Chambon, H. Gronemeyer, and J. Moras 1995. Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid. Nature 378:681–689.
  • Schapira, M., M. Totrov, and J. Abagyan 1999. Prediction of the binding energy for small molecules, peptides and proteins. J. Mol. Recognit. 12:177–190.
  • Schule, R., K. Umesono, D. J. Mangelsdorf, J. Bolado, J. W. Pike, and J. Evans 1990. Jun-Fos and receptors for vitamins A and D recognize a common response element in the human osteocalcin gene. Cell 61:497–504.
  • Selmi-Ruby, S., J. Casanova, S. Malhotra, B. Roussett, B. M. Raaka, and J. Samuels 1998. Role of the conserved C-terminal region of thyroid hormone receptor-α in ligand-dependent transcriptional activation. Mol. Cell. Endocrinol. 138:105–114.
  • Shattil, S. J. Personal communication.
  • Shattil, S. J., T. O’Toole, M. Eigenthaler, V. Thon, M. Williams, B. M. Babior, and J. Ginsberg 1995. β3-Endonexin, a novel polypeptide that interacts specifically with the cytoplasmic tail of the integrin β3 subunit. J. Cell Biol. 131:807–816.
  • Sheikh, M. S., Z.-M. Shao, X.-S. Li, M. Dawson, A. M. Jetten, S. Wu, B. A. Conley, M. Garcia, H. Rochefort, and J. Fontana 1994. Retinoid-resistant estrogen receptor-negative human breast carcinoma cells transfected with retinoic acid receptor-α acquire sensitivity to growth inhibition by retinoids. J. Biol. Chem. 269:21440–21447.
  • Spencer, T. E., G. Jenster, M. M. Burcin, C. D. Allis, J. Zhou, C. A. Mizzen, N. J. McKenna, S. A. Onate, S. Y. Tsai, M. J. Tsai, and J. O’Malley 1997. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–198.
  • Strait, K., H. L. Schwartz, A. Perez-Castillo, and J. Oppenheimer 1990. Relationship of c-erbA mRNA content to tissue triiodothyronine nuclear binding capacity and function in developing and adult rats. J. Biol. Chem. 265:10514–10521.
  • Strynadka, N. C., M. Eisenstein, E. Katchalski-Katzir, B. K. Shoichet, I. D. Kuntz, R. Abagyan, M. Totrov, J. Janin, J. Cherfils, F. Zimmerman, A. Olson, B. Duncan, M. Rao, R. Jackson, M. Sternberg, and J. James 1996. Molecular docking programs successfully predict the binding of a beta-lactamase inhibitory protein to TEM-1 beta-lactamase. Nat. Struct. Biol. 3:233–239.
  • Sugawara, A., N. Sanno, N. Takahashi, R. Y. Osamura, and J. Abe 1997. Retinoid X receptors in the kidney: their protein expression and functional significance. Endocrinology 138:3175–3180.
  • Takeshita, A., G. R. Cardona, N. Koibuchi, C. S. Suen, and J. Chin 1997. TRAM-1, a novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1. J. Biol. Chem. 272:27629–27634.
  • Torchia, J., D. W. Rose, J. Inostroza, Y. Kamei, S. Westin, C. K. Glass, and J. Rosenfeld 1997. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387:677–684.
  • Totrov, M., and J. Abagyan 1994. Detailed ab initio prediction of lysozyme-antibody complex with 1.6 Å accuracy. Nat. Struct. Biol. 1:259–263.
  • Totrov, M., and J. Abagyan 1997. Flexible protein-ligand docking by global energy optimization in internal coordinates. Proteins 1997 (Suppl. 1):215–220.
  • Umesono, K., and J. Evans 1989. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57:1139–1146.
  • Umesono, K., K. K. Murakami, C. C. Thompson, and J. Evans 1991. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D receptors. Cell 65:1255–1266.
  • Voegel, J. J., M. J. S. Heine, C. Zechel, P. Chambon, and J. Gronemeyer 1996. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15:3667–3675.
  • Wagner, R. L., J. W. Apriletti, M. E. McGrath, B. L. West, J. D. Baxter, and J. Fletterick 1995. A structural role for hormone in the thyroid hormone receptor. Nature 378:690–697.
  • Waterman, M. L., S. Adler, C. Nelson, G. L. Greene, R. M. Evans, and J. Rosenfeld 1988. A single domain of the estrogen receptor confers deoxyribonucleic acid binding and transcriptional activation of the rat prolactin gene. Mol. Endocrinol. 2:14–21.
  • Willert, K., and J. Nusse 1998. Beta-catenin: a key mediator of Wnt signaling. Curr. Opin. Genet. Dev. 8:95–102.
  • Yang, X. J., V. V. Ogryzko, J. Nishikawa, B. H. Howard, and J. Nakatani 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324.
  • Yao, T. P., G. Ku, N. Zhou, R. Scully, and J. Livingston 1996. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc. Natl. Acad. Sci. USA 93:10626–10631.
  • Yeh, S., and J. Chang 1996. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc. Natl. Acad. Sci. USA 93:5517–5521.
  • Yuan, C. X., M. Ito, J. D. Fondell, Z. Y. Fu, and J. Roeder 1998. The TRAP220 component of a thyroid hormone receptor-associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc. Natl. Acad. Sci. USA 95:7939–7944.
  • Zhang, J. J., U. Vinkemeier, W. Gu, D. Chakravarti, C. M. Horvath, J. E. Darnell Jr.. 1996. Two contact regions between Stat1 and CBP/p300 in interferon gamma signaling. Proc. Natl. Acad. Sci. USA 93:15092–15096.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.