62
Views
789
CrossRef citations to date
0
Altmetric
Minireview

Caveolins, Liquid-Ordered Domains, and Signal Transduction

, , , , , , & show all
Pages 7289-7304 | Published online: 28 Mar 2023

REFERENCES

  • Anderson, R. G. W. 1998. The caveolae membrane system. Annu. Rev. Biochem. 67:199–225.
  • Anderson, R. G. W., B. A. Kamen, K. G. Rothberg, and J. Lacey 1992. Potocytosis: sequestration and transport of small molecules by caveolae. Science 255:410–411.
  • Babitt, J., B. Trigatti, A. Rigotti, E. J. Smart, R. G. Anderson, S. Xu, and J. Krieger 1997. Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae. J. Biol. Chem. 272:13242–13249.
  • Bamji, S. X., M. Majdan, C. D. Pozniak, D. J. Belliveau, R. Aloyz, J. Kohn, C. G. Causing, and J. Miller 1998. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J. Cell Biol. 140:911–923.
  • Bickel, P. E., P. E. Scherer, J. E. Schnitzer, P. Oh, M. P. Lisanti, and J. Lodish 1997. Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J. Biol. Chem. 272:13793–13802.
  • Bilderback, T. R., V. R. Gazula, M. P. Lisanti, and J. Dobrowsky 1999. Caveolin interacts with Trk A and p75(NTR) and regulates neurotrophin signaling pathways. J. Biol. Chem. 274:257–263.
  • Bilderback, T. R., R. J. Grigsby, and J. Dobrowsky 1997. Association of p75(NTR) with caveolin and localization of neurotrophin-induced sphingomyelin hydrolysis to caveolae. J. Biol. Chem. 272:10922–10927.
  • Bist, A., P. E. Fielding, and J. Fielding 1997. Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol. Proc. Natl. Acad. Sci. USA 94:10693–10698.
  • Bouillot, C., A. Prochiantz, G. Rougon, and J. Allinquant 1996. Axonal amyloid precursor protein expressed by neurons in vitro is present in a membrane fraction with caveolae-like properties. J. Biol. Chem. 271:7640–7644.
  • Bretscher, M. S., and J. Whytock 1977. Membrane-associated vesicles in fibroblasts. J. Ultrastruct. Res. 61:215–217.
  • Brown, D., and J. Rose 1992. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544.
  • Brown, D. A., and J. London 1998. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164:103–114.
  • Brown, D. A., and J. London 1997. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem. Biophys. Res. Commun. 240:1–7.
  • Bruns, R. R., and J. Palade 1968. Studies on blood capillaries. I. General organization of blood capillaries in muscle. J. Cell Biol. 37:244–276.
  • Cameron, P. L., J. W. Ruffin, R. Bollag, H. Rasmussen, and J. Cameron 1997. Identification of caveolin and caveolin-related proteins in the brain. J. Neurosci. 17:9520–9535.
  • Cao, H., F. Garcia, and J. McNiven 1998. Differential distribution of dynamin isoforms in mammalian cells. Mol. Biol. Cell 9:2595–2609.
  • Carman, C. V., M. P. Lisanti, and J. Benovic 1999. Regulation of G protein-coupled receptor kinases by caveolin. J. Biol. Chem. 274:8858–8864.
  • Casaccia-Bonnefil, P., R. B. D. Carte, R. T. Dobrowsky, and J. Chao 1996. Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383:716–719.
  • Chen, M. S., R. A. Obar, C. C. Schroeder, T. W. Austin, C. A. Poodry, S. C. Wadsworth, and J. Vallee 1991. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351:583–586.
  • Cook, T. A., R. Urrutia, and J. McNiven 1994. Identification of dynamin 2, an isoform ubiquitously expressed in rat tissues. Proc. Natl. Acad. Sci. USA 91:644–648.
  • Couet, J., S. Li, T. Okamoto, T. Ikezu, and J. Lisanti 1997. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J. Biol. Chem. 272:6525–6533.
  • Couet, J., M. Sargiacomo, and J. Lisanti 1997. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins: caveolin-binding negatively regulates tyrosine and serine/threonine kinase activities. J. Biol. Chem. 272:30429–30438.
  • Czarny, M., Y. Lavie, G. Fiucci, and J. Liscovitch 1999. Localization of phospholipase D in detergent-insoluble, caveolin-rich membrane domains. Modulation by caveolin-1 expression and caveolin-1 82-101. J. Biol. Chem. 274:2717–2724.
  • Damke, H., T. Baba, A. M. van der Bliek, and J. Schmid 1995. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J. Cell Biol. 131:69–80.
  • Damke, H., T. Baba, D. E. Warnock, and J. Schmid 1994. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol. 127:915–934.
  • Das, K., R. Y. Lewis, P. E. Scherer, and J. Lisanti 1999. The membrane spanning domains of caveolins 1 and 2 mediate the formation of caveolin hetero-oligomers. Implications for the assembly of caveolae membranes in vivo. J. Biol. Chem. 274:18721–18726.
  • Dietzen, D. J., W. R. Hastings, and J. Lublin 1995. Caveolin is palmitoylated on multiple cysteine residues: palmitoylation is not necessary for localization of caveolin to caveolae. J. Biol. Chem. 270:6838–6842.
  • Dobrowsky, R. T., G. M. Jenkins, and J. Hannun 1995. Neurotrophins induce sphingomyelin hydrolysis. Modulation by co-expression of p75NTR with Trk receptors. J. Biol. Chem. 270:22135–22142.
  • Dobrowsky, R. T., M. H. Werner, A. M. Castellino, M. V. Chao, and J. Hannun 1994. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science 265:1596–1599.
  • Dupree, P., R. G. Parton, G. Raposo, T. V. Kurzchalia, and J. Simons 1993. Caveolae and sorting of the trans-Golgi network of epithelial cells. EMBO J. 12:1597–1605.
  • Engelman, J. A., C. Chu, A. Lin, H. Jo, T. Ikezu, T. Okamoto, D. S. Kohtz, and J. Lisanti 1998. Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett. 428:205–211.
  • Engelman, J. A., R. J. Lee, A. Karnezis, D. J. Bearss, M. Webster, P. Siegel, W. J. Muller, J. J. Windle, R. G. Pestell, and J. Lisanti 1998. Reciprocal regulation of neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. Implications for human breast cancer. J. Biol. Chem. 273:20448–20455.
  • Engelman, J. A., C. C. Wykoff, S. Yasuhara, K. S. Song, T. Okamoto, and J. Lisanti 1997. Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J. Biol. Chem. 272:16374–16381.
  • Engelman, J. A., X. Zhang, F. Galbiati, D. Volonte, F. Sotgia, R. G. Pestell, C. Minetti, P. E. Scherer, T. Okamoto, and J. Lisanti 1998. Molecular genetics of the caveolin gene family: implications for human cancers, diabetes, Alzheimer disease, and muscular dystrophy. Am. J. Hum. Genet. 63:1578–1587.
  • Engelman, J. A., X. L. Zhang, F. Galbiati, and J. Lisanti 1998. Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3). Cav-1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7q31). FEBS Lett. 429:330–336.
  • Engelman, J. A., X. L. Zhang, and J. Lisanti 1999. Sequence and detailed organization of the human caveolin-1 and -2 genes located near the D7S522 locus (7q31.1). Methylation of a CpG island in the 5′ promoter region of the caveolin-1 gene in human breast cancer cell lines. FEBS Lett. 448:221–230.
  • Engelman, J. A., X. L. Zhang, R. G. Pestell, and M. P. Lisanti. p42/44 MAP kinase-dependent and -independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and PKA signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. J. Biol. Chem., in press.
  • Feron, O., L. Belhassen, L. Kobzik, T. W. Smith, R. A. Kelly, and J. Michel 1996. Endothelial nitric oxide synthase targeting to caveolae. J. Biol. Chem. 271:22810–22814.
  • Feron, O., C. Dessy, S. Moniotte, J. P. Desager, and J. Balligand 1999. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J. Clin. Invest. 103:897–905.
  • Feron, O., C. Dessy, D. J. Opel, M. A. Arstall, R. A. Kelly, and J. Michel 1998. Modulation of the endothelial nitric-oxide synthase-caveolin interaction in cardiac myocytes. Implications for the autonomic regulation of heart rate. J. Biol. Chem. 273:30249–30254.
  • Feron, O., J. B. Michel, K. Sase, and J. Michel 1998. Dynamic regulation of endothelial nitric oxide synthase: complementary roles of dual acylation and caveolin interactions. Biochemistry 37:193–200.
  • Fiedler, K., T. Kobayashi, T. Kurzchalia, and J. Simons 1993. Glycosphingolipid-enriched, detergent-insoluble complexes in protein sorting in epithelial cells. Biochemistry 32:6365–6373.
  • Fielding, C., A. Bist, and J. Fielding 1997. Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc. Natl. Acad. Sci. USA 94:3753–3758.
  • Fielding, P. E., and J. Fielding 1995. Plasma membrane caveolae mediate the efflux of cellular free cholesterol. Biochemistry 34:14288–14292.
  • Fishman, P. H. 1982. Internalization and degradation of cholera toxin by cultured cells: relationship to toxin action. J. Cell. Biol. 93:860–865.
  • Fivaz, M., L. Abrami, and J. van der Goot 1999. Landing on lipid rafts. Trends Cell Biol. 9:212–213 (Letter.)
  • Fra, A. M., M. Masserini, P. Palestini, S. Sonnino, and J. Simons 1995. A photo-reactive derivative of ganglioside GM1 specifically cross-links VIP21-caveolin on the cell surface. FEBS Lett. 375:11–14.
  • Fra, A. M., E. Williamson, K. Simons, and J. Parton 1995. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc. Natl. Acad. Sci. USA 92:8655–8659.
  • Galbiati, F., D. Volonte, J. A. Engelman, G. Watanabe, R. Burk, R. G. Pestell, and J. Lisanti 1998. Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J. 17:6633–6648.
  • Galbiati, F., D. Volonte, O. Gil, G. Zanazzi, J. L. Salzer, M. Sargiacomo, P. E. Scherer, J. A. Engelman, A. Schlegel, M. Parenti, T. Okamoto, and J. Lisanti 1998. Expression of caveolins 1 and 2 in differentiating PC12 cells and dorsal root ganglion cells. Proc. Natl. Acad. Sci. USA 95:10257–10262.
  • Galbiati, F., D. Volonte, J. S. Goltz, Z. Steele, J. Sen, J. Jurcsak, D. Stein, L. Stevens, and J. Lisanti 1998. Identification, sequence and developmental expression of invertebrate flotillins from Drosophila melanogaster. Gene 210:229–237.
  • Galbiati, F., D. Volonte, D. Meani, G. Milligan, D. M. Lublin, M. P. Lisanti, and J. Parenti 1999. The dually acylated NH2-terminal domain of gi1alpha is sufficient to target a green fluorescent protein reporter to caveolin-enriched plasma membrane domains. Palmitoylation of caveolin-1 is required for the recognition of dually acylated G-protein alpha subunits in vivo. J. Biol. Chem. 274:5843–5850.
  • Galbiati, F., V. Volonte, C. Minetti, J. B. Chu, and J. Lisanti 1999. Phenotypic behavior of caveolin-3 mutations that cause autosomal dominant limb girdle muscular dystrophy (LGMD-1C). Retention of LGMD-1C caveolin-3 mutants within the Golgi complex. J. Biol. Chem. 274:25632–25641.
  • Garcia-Cardena, G., R. Fan, D. F. Stern, J. Liu, and J. Sessa 1996. Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J. Biol. Chem. 271:27237–27240.
  • Garcia-Cardena, G., P. Martasek, B. S. Siler-Masters, P. M. Skidd, J. C. Couet, S. Li, M. P. Lisanti, and J. Sessa 1997. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin: functional significance of the NOS caveolin binding domain in vivo. J. Biol. Chem. 272:25437–25440.
  • Garcia-Cardena, G., P. Oh, J. Liu, J. E. Schnitzer, and J. Sessa 1996. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc. Natl. Acad. Sci. USA 93:6448–6453.
  • Ghosh, S., R. Gachhui, C. Crooks, C. Wu, M. P. Lisanti, and J. Stuehr 1998. Interaction between caveolin-1 and the reductase domain of endothelial nitric-oxide synthase. Consequences for catalysis. J. Biol. Chem. 273:22267–22271.
  • Glenney, J. R. 1992. The sequence of human caveolin reveals identity with VIP 21, a component of transport vesicles. FEBS Lett. 314:45–48.
  • Glenney, J. R. 1989. Tyrosine phosphorylation of a 22 kD protein is correlated with transformation with Rous sarcoma virus. J. Biol. Chem. 264:20163–20166.
  • Glenney, J. R., and J. Soppet 1992. Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in RSV-transformed fibroblasts. Proc. Natl. Acad. Sci. USA 89:10517–10521.
  • Glenney, J. R., and J. Zokas 1989. Novel tyrosine kinase substrates from Rous sarcoma virus transformed cells are present in the membrane cytoskeleton. J. Cell Biol. 108:2401–2408.
  • Graf, G. A., P. M. Connell, D. R. van der Westhuyzen, and J. Smart 1999. The class B, type I scavenger receptor promotes the selective uptake of high density lipoprotein cholesterol ethers into caveolae. J. Biol. Chem. 274:12043–12048.
  • Haass, C., E. H. Koo, A. Mellon, A. Y. Hung, and J. Selkoe 1992. Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357:500–503.
  • Hailstones, D., L. S. Sleer, R. G. Parton, and J. Stanley 1998. Regulation of caveolin and caveolae by cholesterol in MDCK cells. J. Lipid Res. 39:369–379.
  • Harder, T., P. Scheiffele, P. Verkade, and J. Simons 1998. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141:929–942.
  • Henley, J. R., E. W. Krueger, B. J. Oswald, and J. McNiven 1998. Dynamin-mediated internalization of caveolae. J. Cell Biol. 141:85–99.
  • Henley, J. R., and J. McNiven 1996. Association of a dynamin-like protein with the Golgi apparatus in mammalian cells. J. Cell Biol. 133:761–775.
  • Herskovits, J. S., C. C. Burgess, R. A. Obar, and J. Vallee 1993. Effects of mutant rat dynamin on endocytosis. J. Cell Biol. 122:565–578.
  • Huang, C., J. R. Hepler, L. T. Chen, A. G. Gilman, R. G. W. Anderson, and J. Mumby 1997. Organization of G proteins and adenylyl cyclase at the plasma membrane. Mol. Biol. Cell 8:2365–2378.
  • Ikezu, T., B. D. Trapp, K. S. Song, A. Schlegel, M. P. Lisanti, and J. Okamoto 1998. Caveolae, plasma membrane microdomains for alpha-secretase-mediated processing of the amyloid protein precursor. J. Biol. Chem. 273:10485–10495.
  • Ikezu, T., H. Ueda, B. D. Trapp, K. Nishiyama, J. F. Sha, D. Volonte, F. Galbiati, A. L. Byrd, G. Bassell, H. Serizawa, W. S. Lane, M. P. Lisanti, and J. Okamoto 1998. Affinity-purification and characterization of caveolins from the brain. Differential expression of caveolin-1, -2, and -3 in brain endothelial and astroglial cell types. Brain Res. 804:177–192.
  • Jacobson, K., and J. Dietrich 1999. Looking at lipid rafts? Trends Cell Biol. 9:87–91 (Forum/comment.)
  • Ju, H., R. Zou, V. J. Venema, and J. Venema 1997. Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J. Biol. Chem. 272:18522–18525.
  • Kaneko, K., M. Vey, M. Scott, S. Pilkuhn, F. E. Cohen, and J. Prusiner 1997. COOH-terminal sequence of the cellular prion protein directs subcellular trafficking and controls conversion into the scrapie isoform. Proc. Natl. Acad. Sci. USA 94:2333–2338.
  • Kantor, D. B., M. Lanzrein, S. J. Stary, G. M. Sandoval, W. B. Smith, B. M. Sullivan, N. Davidson, and J. Schuman 1996. A role for endothelial NO synthase in LTP revealed by adenovirus-mediated inhibition and rescue. Science 274:1744–1748.
  • Kessell, I., B. D. Holst, and J. Roth 1989. Membranous intermediates in endocytosis are labile, as shown in a temperature-sensitive mutant. Proc. Natl. Acad. Sci. USA 86:4968–4972.
  • Kim, J. H., J. M. Han, S. Lee, Y. Kim, T. G. Lee, J. B. Park, S. D. Lee, P. G. Suh, and J. Ryu 1999. Phospholipase D1 in caveolae: regulation by protein kinase C alpha and caveolin-1. Biochemistry 38:3763–3769.
  • Koleske, A. J., D. Baltimore, and J. Lisanti 1995. Reduction of caveolin and caveolae in oncogenically transformed cells. Proc. Natl. Acad. Sci. USA 92:1381–1385.
  • Kosaka, T., and J. Ikeda 1983. Reversible blockage of membrane retrieval and endocytosis in the garland cell of the temperature-sensitive mutant of Drosophila melanogaster, shibirets1. J. Cell Biol. 97:499–507.
  • Kurzchalia, T., P. Dupree, R. G. Parton, R. Kellner, H. Virta, M. Lehnert, and J. Simons 1992. VIP 21, a 21-kD membrane protein, is an integral component of trans-Golgi-network-derived transport vesicles. J. Cell Biol. 118:1003–1014.
  • Kurzchalia, T. V., P. Dupree, and J. Monier 1994. VIP21-caveolin, a protein of the trans-Golgi network and caveolae. FEBS Lett. 346:88–91.
  • Lamaze, C., and J. Schmid 1995. The emergence of clathrin-independent pinocytic pathways. Curr. Opin. Cell Biol. 7:573–580.
  • Lee, S.-J., U. Liyanage, P. E. Bickel, W. Xia, P. T. Lansbury, and J. Kosik 1998. A detergent-insoluble membrane compartment contains Abeta in vivo. Nat. Med. 4:730–734.
  • Li, S., J. Couet, and J. Lisanti 1996. Src tyrosine kinases, G alpha subunits and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J. Biol. Chem. 271:29182–29190.
  • Li, S., T. Okamoto, M. Chun, M. Sargiacomo, J. E. Casanova, S. H. Hansen, I. Nishimoto, and J. Lisanti 1995. Evidence for a regulated interaction between hetero-trimeric G proteins and caveolin. J. Biol. Chem. 270:15693–15701.
  • Li, S., T. Okamoto, M. Chun, M. Sargiacomo, J. E. Casanova, S. H. Hansen, I. Nishimoto, and J. Lisanti 1995. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J. Biol. Chem. 270:15693–15701.
  • Li, S., R. Seitz, and J. Lisanti 1996. Phosphorylation of caveolin by Src tyrosine kinases: the alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J. Biol. Chem. 271:3863–3868.
  • Li, S., K. S. Song, S. S. Koh, A. Kikuchi, and J. Lisanti 1996. Baculovirus-based expression of mammalian caveolin in Sf21 insect cells. A model system for the biochemical and morphological study of caveolae biogenesis. J. Biol. Chem. 271:28647–28654.
  • Li, S., K. S. Song, and J. Lisanti 1996. Expression and characterization of recombinant caveolin. Purification by polyhistidine tagging and cholesterol-dependent incorporation into defined lipid membranes. J. Biol. Chem. 271:568–573.
  • Lisanti, M. P., M. Sargiacomo, and J. Scherer 1999. Purification of caveolae-derived membrane microdomains containing lipid-anchored signaling molecules, such as GPI-anchored proteins, H-Ras, Src-family tyrosine kinases, eNOS and G-protein alpha-, beta-, and gamma-subunits. Methods Mol. Biol. 116:51–60.
  • Lisanti, M. P., Z.-T. Tang, P. Scherer, and J. Sargiacomo 1995. Caveolae purification and GPI-linked protein sorting in polarized epithelia. Methods Enzymol. 250:655–668.
  • Liu, J., G. Garcia-Cardena, and J. Sessa 1996. Palmitoylation of endothelial nitric oxide synthase is necessary for optimal stimulated release of nitric oxide: implications for caveolae localization. Biochemistry 35:13277–13281.
  • Liu, J., P. Oh, T. Horner, R. A. Rogers, and J. Schnitzer 1997. Organized endothelial cell surface signal transduction in caveolae. J. Biol. Chem. 272:7211–7222.
  • Liu, J., B. Razani, S. Tang, B. I. Terman, J. A. Ware, and J. Lisanti 1999. Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block VEGF-induced down-regulation of caveolin-1. J. Biol. Chem. 274:15781–15785.
  • Liu, P., and J. Anderson 1995. Compartmentalized production of ceramide at the cell surface. J. Biol. Chem. 270:27179–27185.
  • Liu, P., Y. Ying, and J. Anderson 1997. Platelet-derived growth factor activates mitogen-activated protein kinase in isolated caveolae. Proc. Natl. Acad. Sci. USA 94:13666–13670.
  • Liu, P., Y. Ying, Y. G. Ko, and J. Anderson 1996. Localization of platelet-derived growth factor-stimulated phosphorylation cascade to caveolae. J. Biol. Chem. 271:10299–10303.
  • McNally, E. M., E. de Sa Moreira, D. J. Duggan, C. G. Bonnemann, M. P. Lisanti, H. G. W. Lidov, M. Vainzof, M. R. Passos-Bueno, E. P. Hoffman, M. Zatz, and J. Kunkel 1998. Caveolin-3 in muscular dystrophy. Hum. Mol. Genet. 7:871–877.
  • McNiven, M. A. 1998. Dynamin: a molecular motor with pinchase action. Cell 94:151–154.
  • Michel, J. B., O. Feron, K. Sase, P. Prabhakar, and J. Michel 1997. Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase. J. Biol. Chem. 272:25907–25912.
  • Milici, A. J., N. E. Watrous, H. Stukenbrok, and J. Palade 1987. Transcytosis of albumin in capillary endothelium. J. Cell Biol. 105:2603–2612.
  • Mineo, C., G. L. James, E. J. Smart, and J. Anderson 1996. Localization of the EGF-stimulated Ras/Raf-1 interaction to caveolae membrane. J. Biol. Chem. 271:11930–11935.
  • Minetti, C., F. Sotgia, C. Bruno, P. Scartezzini, P. Broda, M. Bado, E. Masetti, M. Mazzocco, A. Egeo, M. A. Donati, D. Volonte’, F. Galbiati, G. Cordone, F. D. Bricarelli, M. P. Lisanti, and J. Zara 1998. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat. Genet. 18:365–368.
  • Monier, S., R. G. Parton, F. Vogel, J. Behlke, A. Henske, and J. Kurzchalia 1995. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol. Biol. Cell 6:911–927.
  • Monier, S., R. G. Parton, F. Vogel, J. Behlke, A. Henske, and J. Kurzchalia 1995. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol. Biol. Cell 6:911–927.
  • Mora, R., V. Bonilha, A. Marmostein, D. Brown, P. E. Scherer, M. P. Lisanti, and J. Rodriguez-Boulan 1999. Caveolin-2 localizes to the Golgi complex but redistributes to plasma membrane, caveolae, and rafts when co-expressed with caveolin-1. J. Biol. Chem. 274:25708–25717.
  • Murata, M., J. Peranen, R. Schreiner, F. Weiland, T. Kurzchalia, and J. Simons 1995. VIP21/caveolin is a cholesterol-binding protein. Proc. Natl. Acad. Sci. USA 92:10339–10343.
  • Nishiyama, K., B. D. Trapp, T. Ikezu, R. M. Ransohoff, T. Tomita, T. Iwatsubo, I. Kanazawa, K. K. Hsiao, M. P. Lisanti, and J. Okamoto 1999. Caveolin-3 up-regulation activates beta-secretase mediated cleavage of the amyloid precursor protein (APP) in Alzheimer’s disease. J. Neurosci. 19:6538–6548.
  • Obar, R. A., C. A. Collins, J. A. Hammarback, H. S. Shpetner, and J. Vallee 1990. Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature 347:256–261.
  • Oh, P., D. P. McIntosh, and J. Schnitzer 1998. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol. 141:101–114.
  • Oka, N., M. Yamamoto, C. Schwencke, J. Kawabe, T. Ebina, S. Ohno, J. Couet, M. P. Lisanti, and J. Ishikawa 1997. Caveolin interaction with protein kinase C. Isoenzyme-dependent regulation of kinase activity by the caveolin scaffolding domain peptide. J. Biol. Chem. 272:33416–33421.
  • Okamoto, T., A. Schlegel, P. E. Scherer, and J. Lisanti 1998. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J. Biol. Chem. 273:5419–5422.
  • Oram, J. F., and J. Yokoyama 1996. Apolipoprotein-mediated removal of cellular cholesterol and phospholipids. J. Lipid Res. 37:2473–2491.
  • Parolini, I., M. Sargiacomo, F. Galbiati, G. Rizzo, F. Grignani, J. A. Engelman, T. Okamoto, T. Ikezu, P. E. Scherer, C. Peschle, and J. Lisanti 1999. Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. Retention of caveolin-2 at the level of the Golgi complex. J. Biol. Chem. 274:25718–25725.
  • Parton, R. G., B. Joggerst, and J. Simons 1994. Regulated internalization of caveolae. J. Cell Biol. 127:1199–1215.
  • Parton, R. G., M. Way, N. Zorzi, and J. Stang 1997. Caveolin-3 associates with developing T-tubules during muscle differentiation. J. Cell Biol. 136:137–154.
  • Pike, L. J., and J. Casey 1996. Localization and turnover of phosphatidylinositol 4,5-bisphosphate in caveolin-enriched membrane domains. J. Biol. Chem. 271:26453–26456.
  • Razani, B., C. S. Rubin, and J. Lisanti 1999. Regulation of cAMP-mediated signal transduction via interaction of caveolins with the catalytic subunit of protein kinase A. J. Biol. Chem. 274:26353–26360.
  • Repetto, S., M. Bado, P. Broda, G. Lucania, E. Masetti, F. Sotgia, I. Carbone, A. Pavan, E. Bonilla, G. Cordone, M. P. Lisanti, and J. Minetti 1999. Increased number of caveolae and caveolin-3 over-expression in Duchenne muscular dystrophy. Biochem. Biophys. Res. Commun. 261:547–550.
  • Rietveld, A., and J. Simons 1998. The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim. Biophys. Acta 1376:467–479.
  • Rizzo, V., D. P. McIntosh, P. Oh, and J. Schnitzer 1998. In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J. Biol. Chem. 273:34724–34729.
  • Robinson, M. S. 1994. The role of clathrin, adaptors and dynamin in endocytosis. Curr. Opin. Cell Biol. 6:538–544.
  • Rothberg, K. G., J. E. Heuser, W. C. Donzell, Y. Ying, J. R. Glenney, and J. Anderson 1992. Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682.
  • Rothberg, K. G., Y. Ying, B. A. Kamen, and J. Anderson 1990. Cholesterol controls the clustering of the glycophopholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J. Cell Biol. 111:2931–2938.
  • Sargiacomo, M., P. E. Scherer, Z. Tang, E. Kubler, K. S. Song, M. C. Sanders, and J. Lisanti 1995. Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc. Natl. Acad. Sci. USA 92:9407–9411.
  • Sargiacomo, M., P. E. Scherer, Z.-L. Tang, E. Kubler, K. S. Song, M. C. Sanders, and J. Lisanti 1995. Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc. Natl. Acad. Sci. USA 92:9407–9411.
  • Sargiacomo, M., M. Sudol, Z. Tang, and J. Lisanti 1993. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J. Cell Biol. 122:789–807.
  • Sargiacomo, M., M. Sudol, Z.-L. Tang, and J. Lisanti 1993. Signal transducing molecules and GPI-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J. Cell Biol. 122:789–807.
  • Scheiffele, P., P. Verkade, A. M. Fra, H. Virta, K. Simons, and J. Ikonen 1998. Caveolin-1 and -2 in the exocytic pathway of MDCK cells. J. Cell Biol. 140:795–806.
  • Scherer, P. E., R. Y. Lewis, D. Volonté, J. A. Engelman, F. Galbiati, J. Couet, D. S. Kohtz, E. van Donselaar, P. Peters, and J. Lisanti 1997. Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J. Biol. Chem. 272:29337–29346.
  • Scherer, P. E., and J. Lisanti 1997. Association of phosphofructokinase-M with caveolin-3 in differentiated skeletal myotubes. Dynamic regulation by extracellular glucose and intracellular metabolites. J. Biol. Chem. 272:20698–20705.
  • Scherer, P. E., M. P. Lisanti, G. Baldini, M. Sargiacomo, C. C. Mastick, and J. Lodish 1994. Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. J. Cell Biol. 127:1233–1243.
  • Scherer, P. E., T. Okamoto, M. Chun, I. Nishimoto, H. F. Lodish, and J. Lisanti 1996. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc. Natl. Acad. Sci. USA 93:131–135.
  • Scherer, P. E., Z. Tang, M. Chun, M. Sargiacomo, H. F. Lodish, and J. Lisanti 1995. Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform-specific monoclonal antibody probe. J. Biol. Chem. 270:16395–16401.
  • Schlegel, A., R. B. Schwab, P. E. Scherer, and J. Lisanti 1999. A role for the caveolin-scaffolding domain in mediating the membrane attachment of caveolin-1. The caveolin-scaffolding domain is both necessary and sufficient for membrane binding in vitro. J. Biol. Chem. 274:22660–22667.
  • Schnitzer, J., D. McIntosh, A. M. Dvorak, J. Liu, and J. Oh 1995. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269:1435–1439.
  • Schnitzer, J. E., P. Oh, and J. McIntosh 1996. Role of GTP hydrolysis in fission of caveolae directly from plasma membranes. Science 274:239–242.
  • Schnitzer, J. E., P. Oh, E. Pinney, and J. Allard 1994. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell Biol. 127:1217–1232.
  • Schwab, R., T. Okamoto, P. E. Scherer, M. P. Lisanti 1999. Analysis of the association of proteins with membranes, p. 1–17. In J. S. Bonifacino, M. Dasso, J. B. Harford, J. Lippincott-Schwartz, K. Yamada (ed.), Current protocols in cell biology. John Wiley & Sons, Inc., New York, N.Y.
  • Selkoe, D. J. 1994. Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer’s disease. Annu. Rev. Cell Biol. 10:373–403.
  • Sessa, W. C., G. Garcia-Cardena, J. Liu, A. Keh, J. S. Pollock, J. Bradley, S. Thiru, I. M. Braverman, and J. Desai 1995. The Golgi association of endothelial nitric oxide synthase is necessary for the efficient synthesis of nitric oxide. J. Biol. Chem. 270:17641–17644.
  • Shaul, P. W., and J. Anderson 1998. Role of plasmalemmal caveolae in signal transduction. Am. J. Physiol. 275:L843–L851.
  • Shaul, P. W., E. J. Smart, L. J. Robinson, Z. German, I. S. Yuhanna, Y. Ying, R. G. W. Anderson, and J. Michel 1996. Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae. J. Biol. Chem. 271:6518–6522.
  • Shpetner, H. S., and J. Vallee 1989. Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59:421–432.
  • Simionescu, N., F. Lupu, and J. Simionescu 1983. Rings of membrane sterols surround the openings of vesicles and fenestrae, in capillary endothelium. J. Cell Biol. 97:1592–600.
  • Simons, M., P. Keller, B. De Strooper, K. Beyreuther, C. G. Dotti, and J. Simons 1998. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc. Natl. Acad. Sci. USA 95:6460–6464.
  • Sisodia, S. S. 1992. Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc. Natl. Acad. Sci. USA 89:6075–6079.
  • Sisodia, S. S., E. H. Koo, K. Beyreuther, A. Unterbeck, and J. Price 1990. Evidence that beta-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science 248:492–495.
  • Smart, E., Y.-S. Ying, P. Conrad, and J. Anderson 1994. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J. Cell Biol. 127:1185–1197.
  • Smart, E. J., D. C. Foster, Y. S. Ying, B. A. Kamen, and J. Anderson 1994. Protein kinase C activators inhibit receptor-mediated potocytosis by preventing internalization of caveolae. J. Cell Biol. 124:307–313.
  • Smart, E. J., Y. Ying, C. Mineo, and J. Anderson 1995. A detergent free method for purifying caveolae membrane from tissue cultured cells. Proc. Natl. Acad. Sci. USA 92:10104–10108.
  • Smart, E. J., Y.-S. Ying, and J. Anderson 1995. Hormonal regulation of caveolae internalization. J. Cell Biol. 131:929–938.
  • Smart, E. J., Y. S. Ying, W. C. Donzell, and J. Anderson 1996. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J. Biol. Chem. 271:29427–29435.
  • Smine, A., X. Xu, K. Nishiyama, T. Katada, P. Gambetti, S. P. Yadav, X. Wu, Y.-C. Shi, S. Yasuhara, V. Homburger, and J. Okamoto 1998. Regulation of brain G-protein, Go, by Alzheimer disease gene presenilin-1. J. Biol. Chem. 273:16281–16288.
  • Song, K. S., S. Li, T. Okamoto, L. Quilliam, M. Sargiacomo, and J. Lisanti 1996. Copurification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent free purification of caveolae membranes. J. Biol. Chem. 271:9690–9697.
  • Song, K. S., P. E. Scherer, Z.-L. Tang, T. Okamoto, S. Li, M. Chafel, C. Chu, D. S. Kohtz, and J. Lisanti 1996. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J. Biol. Chem. 271:15160–15165.
  • Song, K. S., Z. Tang, S. Li, and J. Lisanti 1997. Mutational analysis of the properties of caveolin-1. A novel role for the C-terminal domain in mediating homo-typic caveolin-caveolin interactions. J. Biol. Chem. 272:4398–4403.
  • Sontag, J. M., E. M. Fykse, Y. Ushkaryov, J. P. Liu, P. J. Robinson, and J. Sudhof 1994. Differential expression and regulation of multiple dynamins. J. Biol. Chem. 269:4547–4554.
  • Sotgia, F., C. Minetti, and J. Lisanti 1999. Localization of the human caveolin-3 gene to the D3S18/D3S4163/D3S4539 locus (3p25), in close proximity to the human oxytocin receptor gene. Identification of the caveolin-3 gene as a candidate for deletion in 3p-syndrome. FEBS Lett. 452:177–180.
  • Takei, K., V. Haucke, V. Slepnev, K. Farsad, M. Salazar, H. Chen, and J. De Camilli 1998. Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell 94:131–141.
  • Tang, Z., P. E. Scherer, T. Okamoto, K. Song, C. Chu, D. S. Kohtz, I. Nishimoto, H. F. Lodish, and J. Lisanti 1996. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J. Biol. Chem. 271:2255–2261.
  • Toya, Y., C. Schwencke, J. Couet, M. P. Lisanti, and J. Ishikawa 1998. Inhibition of adenylyl cyclase by caveolin peptides. Endocrinology 139:2025–2031.
  • Tran, D., J. L. Carpentier, F. Sawano, P. Gorden, and J. Orci 1987. Ligands internalized through coated or noncoated invaginations follow a common intracellular pathway. Proc. Natl. Acad. Sci. USA 84:7957–7961.
  • Trigatti, B. L., R. G. Anderson, and J. Gerber 1999. Identification of caveolin-1 as a fatty acid binding protein. Biochem. Biophys. Res. Commun. 255:34–39.
  • Uittenbogaard, A., Y. Ying, and J. Smart 1998. Characterization of a cytosolic heat-shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J. Biol. Chem. 273:6525–6532.
  • Urrutia, R., J. R. Henley, T. Cook, and J. McNiven 1997. The dynamins: redundant or distinct functions for an expanding family of related GTPases? Proc. Natl. Acad. Sci. USA 94:377–384.
  • van der Bliek, A. M., and J. Meyerowitz 1991. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351:411–414.
  • van der Bliek, A. M., T. E. Redelmeier, H. Damke, E. J. Tisdale, E. M. Meyerowitz, and J. Schmid 1993. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J. Cell Biol. 122:553–563.
  • Venema, V. J., H. Ju, R. Zou, and J. Venema 1997. Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain. J. Biol. Chem. 272:28187–28190.
  • Volonté, D., F. Galbiati, S. Li, K. Nishiyama, T. Okamoto, and J. Lisanti 1999. Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo. Characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe. J. Biol. Chem. 274:12702–12709.
  • Wary, K. K., F. Mainiero, S. J. Isakoff, E. E. Marcantonio, and J. Giancotti 1996. The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 87:733–743.
  • Wary, K. K., A. Mariotti, C. Zurzolo, and J. Giancotti 1998. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94:625–634.
  • Waugh, M. G., D. Lawson, S. K. Tan, and J. Hsuan 1998. Phosphatidylinositol 4-phosphate synthesis in immunoisolated caveolae-like vesicles and low buoyant density non-caveolar membranes. J. Biol. Chem. 273:17115–17121.
  • Webb, N. R., P. M. Connell, G. A. Graf, E. J. Smart, W. J. de Villiers, F. C. de Beer, and J. van der Westhuyzen 1998. SR-BII, an isoform of the scavenger receptor BI containing an alternate cytoplasmic tail, mediates lipid transfer between high density lipoprotein and cells. J. Biol. Chem. 273:15241–15248.
  • Wei, Y., M. E. Lukashev, D. I. Simon, S. C. Bodary, S. Rosenberg, M. V. Doyle, and J. Chapman 1996. Regulation of integrin function by the urokinase receptor. Science 273:1551–1555.
  • Wei, Y., X. Yang, Q. Liu, J. A. Wilkins, and J. Chapman 1999. A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. J. Cell Biol. 144:1285–1294.
  • Yamamoto, M., Y. Toya, R. A. Jensen, and J. Ishikawa 1999. Caveolin is an inhibitor of platelet-derived growth factor receptor signaling. Exp. Cell Res. 247:380–388.
  • Yamamoto, M., Y. Toya, C. Schwencke, M. P. Lisanti, M. G. Myers, and J. Ishikawa 1998. Caveolin is an activator of insulin receptor signaling. J. Biol. Chem. 273:26962–26968.
  • Yokoyama, C., X. Wang, M. R. Briggs, A. Admon, J. Wu, X. Hua, J. L. Goldstein, and J. Brown 1993. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 75:187–197.
  • Yoon, S. O., P. Casaccia-Bonnefil, B. Carter, and J. Chao 1998. Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J. Neurosci. 18:3273–3281.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.