29
Views
51
CrossRef citations to date
0
Altmetric
Gene Expression

Identification of a Bidirectional Splicing Enhancer: Differential Involvement of SR Proteins in 5′ or 3′ Splice Site Activation

, , &
Pages 7347-7356 | Received 10 May 1999, Accepted 28 Jul 1999, Published online: 28 Mar 2023

REFERENCES

  • Adams, M. D., D. Z. Rudner, and J. Rio 1996. Biochemistry and regulation of pre-mRNA splicing. Curr. Opin. Cell Biol. 8:331–339.
  • Berget, S. M. 1995. Exon recognition in vertebrate splicing. J. Biol. Chem. 270:2411–2414.
  • Berk, A. J., and J. Sharp 1978. Structure of the adenovirus 2 early mRNAs. Cell 14:695–711.
  • Black, D. L. 1995. Finding splice sites within a wilderness of RNA. RNA 1:763–771.
  • Caceres, J. F., S. Stamm, D. M. Helfman, and J. Krainer 1994. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 265:1706–1709.
  • Carstens, R. P., W. L. McKeehan, and J. Garcia-Blanco 1998. An intronic sequence element mediates both activation and repression of rat fibroblast growth factor receptor 2 pre-mRNA splicing. Mol. Cell. Biol. 18:2205–2217.
  • Cavaloc, Y., C. F. Bourgeois, L. Kister, and J. Stevenin 1999. The splicing factors 9G8 and SRp20 transactivate splicing through different and specific enhancers. RNA 5:468–483.
  • Cavaloc, Y., M. Popielarz, J. P. Fuchs, R. Gattoni, and J. Stevenin 1994. Characterization and cloning of the human splicing factor 9G8: a novel 35 kDa factor of the serine/arginine protein family. EMBO J. 13:2639–2649.
  • Chabot, B. 1996. Directing alternative splicing: cast and scenarios. Trends Genet. 12:472–478.
  • Chan, R. C., and J. Black 1995. Conserved intron elements repress splicing of a neuron-specific c-src exon in vitro. Mol. Cell. Biol. 15:6377–6385.
  • Chandler, S. D., A. Mayeda, J. M. Yeakley, A. R. Krainer, and J. Fu 1997. RNA splicing specificity determined by the coordinated action of RNA recognition motifs in SR proteins. Proc. Natl. Acad. Sci. USA 94:3596–3601.
  • Chebli, K., R. Gattoni, P. Schmitt, G. Hildwein, and J. Stevenin 1989. The 216-nucleotide intron of the E1A pre-mRNA contains a hairpin structure that permits utilization of unusually distant branch acceptors. Mol. Cell. Biol. 9:4852–4861.
  • Chow, L. T., T. R. Broker, and J. Lewis 1979. Complex splicing patterns of RNAs from the early regions of adenovirus-2. J. Mol. Biol. 134:265–303.
  • Coulter, L. R., M. A. Landree, and J. Cooper 1997. Identification of a new class of exonic splicing enhancers by in vivo selection. Mol. Cell. Biol. 17:2143–2150.
  • Del Gatto, F., and J. Breathnach 1995. Exon and intron sequences, respectively, repress and activate splicing of a fibroblast growth factor receptor 2 alternative exon. Mol. Cell. Biol. 15:4825–4834.
  • Dirksen, W. P., R. K. Hampson, Q. Sun, and J. Rottman 1994. A purine-rich exon sequence enhances alternative splicing of bovine growth hormone pre-mRNA. J. Biol. Chem. 269:6431–6436.
  • Dye, D. T., M. Buvoli, S. A. Mayer, C. H. Lin, and J. Patton 1998. Enhancer elements activate the weak 3′ splice site of alpha-tropomyosin exon 2. RNA 4:1523–1536.
  • Elrick, L. L., M. B. Humphrey, T. A. Cooper, and J. Berget 1998. A short sequence within two purine-rich enhancers determines 5′ splice site specificity. Mol. Cell. Biol. 18:343–352.
  • Eperon, I. C., D. C. Ireland, R. A. Smith, A. Mayeda, and J. Krainer 1993. Pathways for selection of 5′ splice sites by U1 snRNPs and SF2/ASF. EMBO J. 12:3607–3617.
  • Fu, X. D. 1993. Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature 365:82–85.
  • Fu, X. D. 1995. The superfamily of arginine/serine-rich splicing factors. RNA 1:663–680.
  • Fu, X. D., A. Mayeda, T. Maniatis, and J. Krainer 1992. General splicing factors SF2 and SC35 have equivalent activities in vitro, and both affect alternative 5′ and 3′ splice site selection. Proc. Natl. Acad. Sci. USA 89:11224–11228.
  • Gallego, M. E., L. Balvay, and J. Brody 1992. cis-Acting sequences involved in exon selection in the chicken β-tropomyosin gene. Mol. Cell. Biol. 12:5415–5425.
  • Gallego, M. E., R. Gattoni, J. Stevenin, J. Marie, and J. Expert-Bezancon 1997. The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the beta-tropomyosin alternative exon 6A. EMBO J. 16:1772–1784.
  • Gattoni, R., K. Chebli, M. Himmelspach, and J. Stevenin 1991. Modulation of alternative splicing of adenoviral E1A transcripts: factors involved in the early-to-late transition. Genes Dev. 5:1847–1858.
  • Gattoni, R., P. Schmitt, and J. Stevenin 1988. In vitro splicing of adenovirus E1A transcripts: characterization of novel reactions and of multiple branch points abnormally far from the 3′ splice site. Nucleic Acids Res. 16:2389–2409.
  • Ge, H., and J. Manley 1990. A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell 62:25–34.
  • Gontarek, R. R., and J. Derse 1996. Interactions among SR proteins, an exonic splicing enhancer, and a lentivirus Rev protein regulate alternative splicing. Mol. Cell. Biol. 16:2325–2331.
  • Graveley, B. R., K. J. Hertel, and J. Maniatis 1998. A systematic analysis of the factors that determine the strength of pre-mRNA splicing enhancers. EMBO J. 17:6747–6756.
  • Hanamura, A., J. F. Caceres, A. Mayeda, B. R. Franza Jr., and J. Krainer 1998. Regulated tissue-specific expression of antagonistic pre-mRNA splicing factors. RNA 4:430–444.
  • Harper, J. E., and J. Manley 1992. Multiple activities of the human splicing factor ASF. Gene Expr. 2:19–29.
  • Hedley, M. L., and J. Maniatis 1991. Sex-specific splicing and polyadenylation of dsx pre-mRNA requires a sequence that binds specifically to tra-2 protein in vitro. Cell 65:579–586.
  • Heinrichs, V., and J. Baker 1995. The Drosophila SR protein RBP1 contributes to the regulation of doublesex alternative splicing by recognizing RBP1 RNA target sequences. EMBO J. 14:3987–4000.
  • Heinrichs, V., L. C. Ryner, and J. Baker 1998. Regulation of sex-specific selection of fruitless 5′ splice sites by transformer and transformer-2. Mol. Cell. Biol. 18:450–458.
  • Hertel, K. J., K. W. Lynch, and J. Maniatis 1997. Common themes in the function of transcription and splicing enhancers. Curr. Opin. Cell Biol. 9:350–357.
  • Hertel, K. J., and J. Maniatis 1998. The function of multisite splicing enhancers. Mol. Cell 1:449–455.
  • Hibbert, C. S., R. R. Gontarek, and J. Beemon 1999. The role of overlapping U1 and U11 5′ splice site sequences in a negative regulator of splicing. RNA 5:333–343.
  • Himmelspach, M., Y. Cavaloc, K. Chebli, J. Stevenin, and J. Gattoni 1995. Titration of serine/arginine (SR) splicing factors during adenoviral infection modulates E1A pre-mRNA alternative splicing. RNA 1:794–806.
  • Jamison, S. F., Z. Pasman, J. Wang, C. Will, R. Luhrmann, J. L. Manley, and J. Garcia-Blanco 1995. U1 snRNP-ASF/SF2 interaction and 5′ splice site recognition: characterization of required elements. Nucleic Acids Res. 23:3260–3267.
  • Kanopka, A., O. Muhlemann, and J. Akusjarvi 1996. Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature 381:535–538.
  • Kanopka, A., O. Muhlemann, S. Petersen-Mahrt, C. Estmer, C. Ohrmalm, and J. Akusjarvi 1998. Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature 393:185–187.
  • Kohtz, J. D., S. F. Jamison, C. L. Will, P. Zuo, R. Luhrmann, M. A. Garcia-Blanco, and J. Manley 1994. Protein-protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature 368:119–124.
  • Krainer, A. R., G. C. Conway, and J. Kozak 1990. The essential pre-mRNA splicing factor SF2 influences 5′ splice site selection by activating proximal sites. Cell 62:35–42.
  • Lavigueur, A., H. La Branche, A. R. Kornblihtt, and J. Chabot 1993. A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Dev. 7:2405–2417.
  • Lim, L. P., and J. Sharp 1998. Alternative splicing of the fibronectin EIIIB exon depends on specific TGCATG repeats. Mol. Cell. Biol. 18:3900–3906.
  • Liu, H. X., M. Zhang, and J. Krainer 1998. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev. 12:1998–2012.
  • Lou, H., K. M. Neugebauer, R. F. Gagel, and J. Berget 1998. Regulation of alternative polyadenylation by U1 snRNPs and SRp20. Mol. Cell. Biol. 18:4977–4985.
  • Lynch, K. W., and J. Maniatis 1996. Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer. Genes Dev. 10:2089–2101.
  • Manley, J. L., and J. Tacke 1996. SR proteins and splicing control. Genes Dev. 10:1569–1579.
  • Mayeda, A., G. R. Screaton, S. D. Chandler, X. D. Fu, and J. Krainer 1999. Substrate specificities of SR proteins in constitutive splicing are determined by their RNA recognition motifs and composite pre-mRNA exonic elements. Mol. Cell. Biol. 19:1853–1863.
  • McNally, L. M., and J. McNally 1998. An RNA splicing enhancer-like sequence is a component of a splicing inhibitor element from Rous sarcoma virus. Mol. Cell. Biol. 18:3103–3111.
  • Modafferi, E. F., and J. Black 1997. A complex intronic splicing enhancer from the c-src pre-mRNA activates inclusion of a heterologous exon. Mol. Cell. Biol. 17:6537–6545.
  • Muro, A. F., A. Iaconcig, and J. Baralle 1998. Regulation of the fibronectin EDA exon alternative splicing. Cooperative role of the exonic enhancer element and the 5′ splice site. FEBS Lett. 437:137–141.
  • Nagoshi, R. N., and J. Baker 1990. Regulation of sex-specific RNA splicing at the Drosophila doublesex gene: cis-acting mutations in exon sequences alter sex-specific RNA splicing patterns. Genes Dev. 4:89–97.
  • Popielarz, M., R. Gattoni, and J. Stevenin 1993. Contrasted cis-acting effects of downstream 5′ splice sites on the splicing of a retained intron: the adenoviral E1A pre-mRNA model. Nucleic Acids Res. 21:5144–5151.
  • Ramchatesingh, J., A. M. Zahler, K. M. Neugebauer, M. B. Roth, and J. Cooper 1995. A subset of SR proteins activates splicing of the cardiac troponin T alternative exon by direct interactions with an exonic enhancer. Mol. Cell. Biol. 15:4898–4907.
  • Robberson, B. L., G. J. Cote, and J. Berget 1990. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10:84–94.
  • Ryan, K. J., and J. Cooper 1996. Muscle-specific splicing enhancers regulate inclusion of the cardiac troponin T alternative exon in embryonic skeletal muscle. Mol. Cell. Biol. 16:4014–4023.
  • Schaal, T. D., and J. Maniatis 1999. Selection and characterization of pre-mRNA splicing enhancers: identification of novel SR protein-specific enhancer sequences. Mol. Cell. Biol. 19:1705–1719.
  • Schaal, T. D., and J. Maniatis 1999. Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol. Cell. Biol. 19:261–273.
  • Schmitt, P., R. Gattoni, P. Keohavong, and J. Stevenin 1987. Alternative splicing of E1A transcripts of adenovirus requires appropriate ionic conditions in vitro. Cell 50:31–39.
  • Screaton, G. R., J. F. Caceres, A. Mayeda, M. V. Bell, M. Plebanski, D. G. Jackson, J. I. Bell, and J. Krainer 1995. Identification and characterization of three members of the human SR family of pre-mRNA splicing factors. EMBO J. 14:4336–4349.
  • Selvakumar, M., and J. Helfman 1999. Exonic splicing enhancers contribute to the use of both 3′ and 5′ splice site usage of rat beta-tropomyosin pre-mRNA. RNA 5:378–394.
  • Si, Z. H., D. Rauch, and J. Stoltzfus 1998. The exon splicing silencer in human immunodeficiency virus type 1 tat exon 3 is bipartite and acts early in spliceosome assembly. Mol. Cell. Biol. 18:5404–5413.
  • Staffa, A., and J. Cochrane 1995. Identification of positive and negative splicing regulatory elements within the terminal tat-rev exon of human immunodeficiency virus type 1. Mol. Cell. Biol. 15:4597–4605.
  • Staknis, D., and J. Reed 1994. SR proteins promote the first specific recognition of pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol. Cell. Biol. 14:7670–7682.
  • Stark, J. M., D. P. Bazett-Jones, M. Herfort, and J. Roth 1998. SR proteins are sufficient for exon bridging across an intron. Proc. Natl. Acad. Sci. USA 95:2163–2168.
  • Stephens, C., and J. Harlow 1987. Differential splicing yields novel adenovirus 5 E1A mRNAs that encode 30 kd and 35 kd proteins. EMBO J. 6:2027–2035.
  • Sun, Q., A. Mayeda, R. K. Hampson, A. R. Krainer, and J. Rottman 1993. General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Dev. 7:2598–2608.
  • Tacke, R., Y. Chen, and J. Manley 1997. Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer. Proc. Natl. Acad. Sci. USA 94:1148–1153.
  • Tacke, R., and J. Manley 1995. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J. 14:3540–3551.
  • Tacke, R., M. Tohyama, S. Ogawa, and J. Manley 1998. Human Tra2 proteins are sequence-specific activators of pre-mRNA splicing. Cell 93:139–148.
  • Tian, H., and J. Kole 1995. Selection of novel exon recognition elements from a pool of random sequences. Mol. Cell. Biol. 15:6291–6298.
  • Ulfendahl, P. J., S. Linder, J. P. Kreivi, K. Nordqvist, C. Sevensson, H. Hultberg, and J. Akusjarvi 1987. A novel adenovirus-2 E1A mRNA encoding a protein with transcription activation properties. EMBO J. 6:2037–2044.
  • Wang, J., and J. Manley 1995. Overexpression of the SR proteins ASF/SF2 and SC35 influences alternative splicing in vivo in diverse ways. RNA 1:335–346.
  • Wang, J., S. H. Xiao, and J. Manley 1998. Genetic analysis of the SR protein ASF/SF2: interchangeability of RS domains and negative control of splicing. Genes Dev. 12:2222–2233.
  • Wang, Z., H. M. Hoffmann, and J. Grabowski 1995. Intrinsic U2AF binding is modulated by exon enhancer signals in parallel with changes in splicing activity. RNA 1:21–35.
  • Watakabe, A., K. Tanaka, and J. Shimura 1993. The role of exon sequences in splice site selection. Genes Dev. 7:407–418.
  • Wu, J. Y., and J. Maniatis 1993. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75:1061–1070.
  • Xiao, J. H., I. Davidson, H. Matthes, J. M. Garnier, and J. Chambon 1991. Cloning, expression, and transcriptional properties of the human enhancer factor TEF-1. Cell 65:551–568.
  • Xu, R., J. Teng, and J. Cooper 1993. The cardiac troponin T alternative exon contains a novel purine-rich positive splicing element. Mol. Cell. Biol. 13:3660–3674.
  • Zahler, A. M., K. M. Neugebauer, W. S. Lane, and J. Roth 1993. Distinct functions of SR proteins in alternative pre-mRNA splicing. Science 260:219–222.
  • Zahler, A. M., and J. Roth 1995. Distinct functions of SR proteins in recruitment of U1 small nuclear ribonucleoprotein to alternative 5′ splice sites. Proc. Natl. Acad. Sci. USA 92:2642–2646.
  • Zhang, W. J., and J. Wu 1996. Functional properties of p54, a novel SR protein active in constitutive and alternative splicing. Mol. Cell. Biol. 16:5400–5408.
  • Zuo, P., and J. Manley 1994. The human splicing factor ASF/SF2 can specifically recognize pre-mRNA 5′ splice sites. Proc. Natl. Acad. Sci. USA 91:3363–3367.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.