10
Views
10
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Context-Dependent Modulation of Replication Activity of Saccharomyces cerevisiae Autonomously Replicating Sequences by Transcription Factors

, &
Pages 7428-7435 | Received 26 May 1999, Accepted 09 Aug 1999, Published online: 28 Mar 2023

REFERENCES

  • Allen, J. B., Z. Zhou, W. Siede, E. C. Friedberg, and J. Elledge 1994. The SAD1/RAD53 protein kinase controls multiple check-points and DNA damage-induced transcription in yeast. Genes Dev. 8:2401–2415.
  • Bartel, P., C.-T. Chien, R. Sternglanz, S. Fields 1993. Using the two-hybrid system to detect protein-protein interactions, p. 153–179. In D. A. Hartley (ed.), Cellular interactions in development: a practical approach. Oxford University Press, Oxford, United Kingdom.
  • Bell, S. P., R. Kobayashi, and J. Stillman 1993. Yeast origin recognition complex functions in transcription silencing and DNA replication. Science 262:1844–1849.
  • Bell, S. P., and J. Stillman 1992. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357:128–134.
  • Bousset, K., and J. Diffley 1998. The Cdc7 protein kinase is required for origin firing during S phase. Genes Dev. 12:480–490.
  • Brewer, B. J., and J. Fangman 1987. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51:463–471.
  • Buchman, A. R., and J. Kornberg 1990. A yeast ARS-binding protein activates transcription synergistically in combination with other weak activating factors. Mol. Cell. Biol. 10:887–897.
  • Buchman, A. R., N. F. Lue, and J. Kornberg 1988. Connections between transcriptional activators, silencers, and telomers as revealed by functional analysis of a yeast DNA-binding protein. Mol. Cell. Biol. 8:5086–5099.
  • Cai, M., and J. Davis 1990. Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell 61:437–446.
  • Celinker, S. E., K. Sweder, J. E. Bailey, and J. Campbell 1984. Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae. Mol. Cell. Biol. 4:2455–2466.
  • Chen, L.-F., K. Ito, Y. Murakami, and J. Ito 1998. The capacity of polyomavirus enhancer binding protein 2αB (AML1/Cbfa2) to stimulate polyomavirus DNA replication is related to its affinity for the nuclear matrix. Mol. Cell. Biol. 18:4165–4167.
  • Dani, M. G., and J. Zakian 1983. Mitotic and meiotic stability of linear plasmids in yeast. Proc. Natl. Acad. Sci. USA 80:3406–3410.
  • Dershowitz, A., and J. Newlon 1993. The effect on chromosome stability of deleting replication origins. Mol. Cell. Biol. 13:391–398.
  • Dubey, D. D., L. R. Davis, S. A. Greenfeder, L. Y. Ong, J. Zhu, J. R. Broach, C. S. Newlon, and J. Huberman 1991. Evidence suggesting that the ARS elements associated with silencers of the yeast mating-type locus HML do not function as chromosomal origins of replication. Mol. Cell. Biol. 11:5346–5355.
  • Fields, S., and J. Song 1989. A novel genetic system to detect protein-protein interaction. Nature 340:245–246.
  • Friedman, K. L., B. J. Brewer, and J. Fangman 1997. Replication profile of Saccharomyces cerevisiae chromosome VI. Genes Cells 2:667–678.
  • Fujii, M., H. Tsuchiya, and J. Seiki 1991. HTLV-1 Tax has distinct but overlapping domains for transcriptional activation and enhancer specificity. Oncogene 6:2349–2352.
  • Giniger, E., S. M. Varnum, and J. Ptashne 1985. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40:767–774.
  • Greenfeder, S. A., and J. Newlon 1992. A replication map of a 61-kb circular derivative of Saccharomyces cerevisiae chromosome III. Mol. Biol. Cell. 3:999–1013.
  • Hsiao, C.-L., and J. Carbon 1979. High-frequency transformation of yeast plasmids containing the cloned yeast ARG4 gene. Proc. Natl. Acad. Sci. USA 76:3829–3833.
  • Hu, Y.-F., Z. L. Hao, and J. Li 1999. Chromatin remodeling and activation of chromosomal DNA replication by an acidic transcriptional activation domain from BRCA1. Genes Dev. 13:637–642.
  • Huang, M., Z. Zhou, and J. Elledge 1998. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 94:595–605.
  • Huang, R. Y., and J. Kowalski 1993. A DNA unwinding element and an ARS consensus comprise a replication origin within a yeast chromosome. EMBO J. 12:4521–4531.
  • Huang, R. Y., and J. Kowalski 1996. Multiple DNA elements in ARS305 determine replication origin activity in a yeast chromosome. Nucleic Acids Res. 24:816–823.
  • Koshland, D., J. C. Kent, and J. Hartwell 1985. Genetic analysis of the mitotic transmission of minichromosomes. Cell 40:393–403.
  • Li, R., D. S. Yu, M. Tanaka, L. Zheng, S. L. Berger, and J. Stillman 1998. Activation of chromosomal DNA replication in Saccharomyces cerevisiae by acidic transcriptional activation domains. Mol. Cell. Biol. 18:1296–1302.
  • Lin, S., and J. Kowalski 1997. Functional equivalency and diversity of cis-acting elements among yeast replication origins. Mol. Cell. Biol. 17:5473–5484.
  • Lue, N. F., and J. Kornberg 1993. A possible role for the yeast TATA-element-binding protein in DNA replication. Proc. Natl. Acad. Sci. USA 90:8018–8022.
  • Ma, J., and J. Ptashne 1987. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48:847–853.
  • Marahrens, Y., and J. Stillman 1994. Replicator dominance in a eukaryotic chromosome. EMBO J. 13:3395–3400.
  • Marahrens, Y., and J. Stillman 1992. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255:817–823.
  • Murakami, Y., M. Asano, M. Satake, and J. Ito 1990. A tumor promoting phorbor ester, TPA, enhances polyomavirus replication by activating the function of the viral enhancer. Oncogene 5:5–13.
  • Newlon, C. S. 1988. Yeast chromosome replication and segregation. Microbiol. Rev. 52:568–601.
  • Newlon, C. S., L. R. Lipchitz, I. Collins, A. Deshpande, R. J. Devenish, R. P. Green, H. L. Klein, T. G. Palzkill, R. B. Ren, S. Synn et al.. 1991. Analysis of a circular derivative of Saccharomyces cerevisiae chromosome III: a physical map and identification and location of ARS elements. Genetics 129:343–357 (Erratum, 130:235, 1992.)
  • Rao, H., Y. Marahrens, and J. Stillman 1994. Functional conservation of multiple elements in yeast chromosomal replicators. Mol. Cell. Biol. 14:7643–7651.
  • Rao, H., and J. Stillman 1995. The origin recognition complex interacts with a bipartite DNA binding site within yeast replicators. Proc. Natl. Acad. Sci. USA 92:2224–2228.
  • Rowley, A., J. H. Cocker, J. Harwood, and J. Diffley 1995. Initiation complex assembly at budding yeast replication origins begins with the recognition of a bipartite sequence by limiting amounts of the initiator, ORC. EMBO J. 14:2631–2641.
  • Sakai, M., A. Okuda, K. Hatayama, S. Sato, S. Nishi, and J. Muramatsu 1989. Structure and expression of the rat c-jun messenger RNA: tissue distribution and increase during chemical hepatocarcinogenesis. Cancer Res. 49:5633–5637.
  • Santocanale, C., and J. Diffley 1998. A Mec-1 and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395:615–618.
  • Santocanale, C., and J. Diffley 1996. ORC- and Cdc6-dependent complexes at active and inactive chromosomal replication origins in Saccharomyces cerevisiae. EMBO J. 23:6671–6679.
  • Shirahige, K., Y. Hori, K. Shiraishi, M. Yamashita, K. Takahashi, C. Obuse, T. Tsurimoto, and J. Yoshikawa 1998. Regulation of DNA-replication origins during cell-cycle progression. Nature 395:618–621.
  • Shirahige, K., T. Iwasaki, M. B. Rashid, N. Ogasawara, and J. Yoshikawa 1993. Location and characterization of autonomously replicating sequences from chromosome VI of Saccharomyces cerevisiae. Mol. Cell. Biol. 13:5043–5056.
  • Snyder, M., R. J. Sapolsky, and J. Davis 1988. Transcription interferes with elements important for chromosome maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:2184–2194.
  • Stinchcomb, D. T., K. Struhl, and J. Davis 1979. Isolation and characterization of a yeast chromosomal replicator. Nature 282:39–43.
  • Struhl, K. 1988. The JUN oncoprotein, a vertebrate transcription factor, activates transcription in yeast. Nature 332:649–650.
  • Takahashi, K., S. Murakami, Y. Chikashige, H. Funabiki, O. Niwa, and J. Yanagida 1992. A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol. Biol. Cell. 3:819–835.
  • Takeshita, S. M., M. Sato, M. Toda, W. Masahashi, and J. Hashimoto-Goto 1987. High-copy-number and low-copy-number plasmid vectors for lacZα-complementation and chloramphenicol- or kanamycin-resistance selection. Gene 61:63–74.
  • Tanaka, S., D. Halter, M. Livingstone-Zatchej, B. Reszel, and J. Thoma 1994. Transcription through the yeast origin of replication ARS1 ends at the ABFI binding site and affects extrachromosomal maintenance of minichromosomes. Nucleic Acids Res. 22:3904–3910.
  • Theis, J. F., and J. Newlon 1994. Domain B of ARS307 is modular and contributes to chromosomal replication origin function. Mol. Cell. Biol. 14:7652–7659.
  • Tschumper, G., and J. Carbon 1983. Copy number control by a yeast centromere. Gene 23:221–232.
  • Walker, S. S., S. C. Francesconi, and J. Eisenberg 1990. A DNA replication enhancer in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 87:4665–4669.
  • Wiltshire, S., S. Raychaudhuri, and J. Eisenberg 1997. An Abf1p C-terminal region lacking transcriptional activation potential stimulates a yeast origin of replication. Nucleic Acids Res. 25:4250–4256.
  • Yamashita, M., Y. Hori, T. Shinomiya, C. Obuse, T. Tsurimoto, H. Yoshikawa, and J. Shirahige 1997. The efficiency and timing of initiation of replication of multiple replicons of Saccharomyces cerevisiae chromosome VI. Genes Cells 2:655–665.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.