3
Views
40
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

In Vivo Analysis of Functional Regions within Yeast Rap1p

, , , &
Pages 7481-7490 | Received 15 Mar 1999, Accepted 06 Aug 1999, Published online: 28 Mar 2023

REFERENCES

  • Baker, H. V. 1986. Glycolytic gene expression in Saccharomyces cerevisiae: nucleotide sequence of GCR1, null mutants, and evidence for expression. Mol. Cell. Biol. 6:3774–3784.
  • Baker, H. V. 1991. GCR1 of Saccharomyces cerevisiae encodes a DNA binding protein whose binding is abolished by mutations in the CTTCC sequence motif. Proc. Natl. Acad. Sci. USA 88:9443–9447.
  • Bitter, G. A., K. K. H. Chang, and J. Egan 1991. A multi-component upstream activation sequence of the Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene promoter. Mol. Gen. Genet. 231:22–32.
  • Brindle, P. K., J. P. Holland, C. E. Willett, M. A. Innis, and J. Holland 1990. Multiple factors bind the upstream activation sites of the yeast enolase genes ENO1 and ENO2: ABF1 protein, like repressor activator protein RAP1, binds cis-acting sequences which modulate repression or activation of transcription. Mol. Cell. Biol. 10:4872–4885.
  • Butler, G., I. W. Dawes, and J. McConnell 1990. TUF factor binds to the upstream region of the pyruvate decarboxylase structural gene (PDC1) of Saccharomyces cerevisiae. Mol. Gen. Genet. 223:449–456.
  • Callebaut, I., and J. Mornon 1997. From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair. FEBS Lett. 400:25–30.
  • Chambers, A., E. A. Packham, and J. Graham 1995. Control of glycolytic gene expression in the budding yeast (Saccharomyces cerevisiae). Curr. Genet. 29:1–9.
  • Chambers, A., C. Stanway, A. J. Kingsman, and J. Kingsman 1988. The UAS of the yeast PGK gene is composed of multiple functional elements. Nucleic Acids Res. 16:8245–8260.
  • Chambers, A., C. Stanway, J. S. H. Tsang, Y. Henry, A. J. Kingsman, and J. Kingsman 1990. ARS binding factor 1 binds adjacent to RAP1 at the UASs of the yeast glycolytic genes PGK and PYK1. Nucleic Acids Res. 18:5393–5399.
  • Chambers, A., J. H. Tsang, C. Stanway, A. J. Kingsman, and J. Kingsman 1989. Transcriptional control of the Saccharomyces cerevisiae PGK gene by RAP1. Mol. Cell. Biol. 9:5516–5524.
  • Chen, D.-Z., B. C. Yang, and J. Kuo 1992. One-step transformation of yeast in stationary phase. Curr. Genet. 21:83–84.
  • Clifton, D., and J. Fraenkel 1981. The gcr (glycolysis regulation) mutation of Saccharomyces cerevisiae. J. Biol. Chem 256:13074–13078.
  • Conrad, M. N., J. H. Wright, A. J. Wolf, and J. Zakian 1990. RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell 63:739–750.
  • Devlin, C., K. Tice-Baldwin, D. Shore, and J. Arndt 1991. RAP1 is required for BAS1/BAS2- and GCN4-dependent transcription of the yeast HIS4 gene. Mol. Cell. Biol. 7:3642–3651.
  • Drazinic, C. M., J. B. Smerage, M. C. Lopez, and J. Baker 1996. Activation mechanism of the multifunctional transcription factor repressor-activator protein 1 (Rap1). Mol. Cell. Biol. 16:3187–3196.
  • Giesman, D., L. Best, and J. Tatchell 1991. The role of RAP1 in the regulation of the Matα locus. Mol. Cell. Biol. 11:1069–1079.
  • Gonçalves, P. M., G. Griffioen, R. Minnee, M. Bosma, L. S. Kraakman, W. H. Mager, and J. Planta 1995. Transcriptional activation of yeast ribosomal protein genes requires additional elements apart from binding sites for Abf1p or Rap1p. Nucleic Acids Res. 23:1475–1480.
  • Gonçalves, P. M., K. Maurer, G. V. N. Amerongen, K. Bergkamp-Steffens, W. H. Mager, and J. Planta 1996. C-terminal domains of general regulatory factors Abf1p and Rap1p in Saccharomyces cerevisiae display functional similarity. Mol. Microbiol. 19:535–543.
  • Graham, I. R., and J. Chambers 1994. Use of a selection technique to identify the diversity of binding sites for the yeast RAP1 transcription factor. Nucleic Acids Res. 22:124–130.
  • Hardy, C. F. J., D. Balderes, and J. Shore 1992. Dissection of a carboxy-terminal region of the yeast regulatory protein RAP1 with effects on both transcriptional activation and silencing. Mol. Cell. Biol. 12:1209–1217.
  • Hardy, C. F. J., L. Sussel, and J. Shore 1992. A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev. 6:801–814.
  • Hawthorne, D. C., and J. Mortimer 1960. Chromosome mapping in Saccharomyces cerevisiae: centromere-linked genes. Genetics 45:1085–1110.
  • Hecht, A., S. Strahl-Bolsinger, and J. Grunstein 1996. Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature 383:92–95.
  • Henry, Y. A. L., A. Chambers, J. S. H. Tsang, A. J. Kingsman, and J. Kingsman 1990. Characterisation of the DNA binding domain of the yeast RAP1 protein. Nucleic Acids Res. 18:2617–2623.
  • Hoffman, C. S., and J. Winston 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272.
  • Holland, M. J., T. Yokoi, J. P. Holland, K. Myambo, and J. Innis 1987. The GCR1 gene encodes a positive transcriptional regulator of the enolase and glyceraldehyde-3-phosphate dehydrogenase gene families in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:813–820.
  • Konig, P., R. Giraldo, L. Chapman, and J. Rhodes 1996. The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell 85:125–136.
  • Kraakman, L. S., G. Griffioen, S. Zerp, P. Groeneveld, J. M. Thevelein, W. M. Mager, and J. Planta 1993. Growth-related expression of ribosomal protein genes in Saccharomyces cerevisiae. Mol. Gen. Genet. 238:196–204.
  • Kurtz, S., and J. Shore 1991. RAP1 protein activates and silences transcription of mating-type genes in yeast. Genes Dev. 5:616–628.
  • Kyrion, G., K. A. Boakye, and J. Lustig 1992. C-terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:5159–5173.
  • Larson, G. P., D. Castanotto, J. J. Rossi, and J. Malafa 1994. Isolation and functional analysis of a Kluyveromyces lactis RAP1 homologue. Gene 150:35–41.
  • Liu, C., X. Mao, and J. Lustig 1994. Mutational analysis defines a C-terminal tail domain of RAP1 essential for telomeric silencing in Saccharomyces cerevisiae. Genetics 138:1025–1040.
  • Lopez, M. C., J. B. Smerage, and J. Baker 1998. Multiple domains of repressor activator protein 1 contribute to facilitated binding of glycolysis regulatory protein 1. Proc. Natl. Acad. Sci. USA 95:14112–14117.
  • Lustig, A. J., S. Kurtz, and J. Shore 1990. Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length. Science 250:549–553.
  • Marcand, S., E. Gilson, and J. Shore 1997. A protein-counting mechanism for telomere length regulation in yeast. Science 275:986–990.
  • Mellor, J., M. J. Dobson, N. A. Roberts, M. F. Tuite, J. S. Emtage, S. White, P. A. Lowe, T. Patel, A. J. Kingsman, and J. Kingsman 1983. Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene 24:1–14.
  • Mizuta, K., R. Tsujii, J. R. Warner, and J. Nishiyama 1998. The C-terminal silencing domain of Rap1p is essential for the repression of ribosomal protein genes in response to a defect in the secretory pathway. Nucleic Acids Res. 26:1063–1069.
  • Moretti, P., K. Freeman, L. Coodly, and J. Shore 1994. Evidence that a complex of SIR proteins interacts with the silencer and telomere binding protein RAP1. Genes Dev. 8:2257–2269.
  • Muller, T., E. Gilson, R. Schmidt, R. Giraldo, J. Sogo, H. Gross, and J. Gasser 1994. Imaging the asymmetrical DNA bend induced by repressor activator protein 1 with scanning tunneling microscopy. J. Struct. Biol. 113:1–12.
  • Nishizawa, M., R. Araki, and J. Teranishi 1989. Identification of an upstream activating sequence and an upstream repressible sequence of the pyruvate kinase gene of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 9:442–451.
  • Ogden, J. E., C. Stanway, S. Kim, J. Mellor, A. J. Kingsman, and J. Kingsman 1986. Efficient expression of the Saccharomyces cerevisiae PGK gene depends on an upstream activating sequence, but does not require TATA sequences. Mol. Cell. Biol. 6:4335–4343.
  • Pretorius, G. H. J., and J. Muller 1992. Conservation of binding site specificity of three yeast DNA binding proteins. FEBS Lett. 298:203–205.
  • Rotenberg, M. O., and J. Woolford 1986. Tripartite upstream promoter element essential for expression of Saccharomyces cerevisiae ribosomal protein genes. Mol. Cell. Biol. 6:674–687.
  • Santangelo, G. M., and J. Tornow 1990. Efficient transcription of the glycolytic gene ADH1 and three translational component genes requires the GCR1 product, which can act through TUF/GRF/RAP binding sites. Mol. Cell. Biol. 10:859–862.
  • Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194:3–21.
  • Shore, D. 1994. RAP1: a protean regulator in yeast. Trends Genet. 10:408–412.
  • Shore, D., and J. Nasmyth 1987. Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51:721–732.
  • Sikorski, R. S., and J. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Sussel, L., and J. Shore 1991. Separation of transcriptional activation and silencing functions of the RAP1-encoded repressor/activator protein 1: isolation of viable mutants affecting both silencing and telomere length. Proc. Natl. Acad. Sci. USA 88:7749–7753.
  • Thompson, J. D., J. D. Higgins, and J. Gibson 1994. Clustal-W-improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.
  • Tornow, J., X. Zeng, W. Gao, and J. Santangelo 1993. GCR1, a transcriptional activator in Saccharomyces cerevisiae, complexes with RAP1 and can function without its DNA binding domain. EMBO J. 12:2431–2437.
  • Uemura, H., M. Koshio, Y. Inoue, M. Cecilia Lopez, and J. Baker 1997. The role of Gcr1p in the transcriptional activation of glycolytic genes in yeast Saccharomyces cerevisiae. Genetics 147:521–532.
  • Wotton, D., and J. Shore 1997. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11:748–760.
  • Woudt, L. P., W. H. Mager, R. T. M. Nieuwint, G. M. Wassenaar, A. C. van der Kuyl, J. J. Murre, M. F. M. Hoekman, P. G. M. Brockhoff, and J. Planta 1987. Analysis of upstream activation sites of yeast ribosomal protein genes. Nucleic Acids Res. 15:6037–6048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.