22
Views
46
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Separation-of-Function Mutations in Saccharomyces cerevisiae MSH2 That Confer Mismatch Repair Defects but Do Not Affect Nonhomologous-Tail Removal during Recombination

, , , &
Pages 7558-7567 | Received 13 Apr 1999, Accepted 29 Jul 1999, Published online: 28 Mar 2023

REFERENCES

  • Acharya, S., T. Wilson, S. Gradia, M. F. Kane, S. Guerrette, G. T. Marsischky, R. Kolodner, and J. Fishel 1996. hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc. Natl. Acad. Sci. USA 93:13629–13634.
  • Alani, E. 1996. The Saccharomyces cerevisiae Msh2p and Msh6p form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. Mol. Cell. Biol. 16:5604–5615.
  • Alani, E., N.-W. Chi, and J. Kolodner 1995. The Saccharomyces cerevisiae Msh2 protein specifically binds to duplex oligonucleotides containing mismatched DNA base pairs and loop insertions. Genes Dev. 9:234–247.
  • Alani, E., S. Lee, M. F. Kane, J. Griffith, and J. Kolodner 1997. Saccharomyces cerevisiae MSH2, a mispaired base recognition protein, also recognizes Holliday junctions in DNA. J. Mol. Biol. 265:289–301.
  • Alani, E., R. A. G. Reenan, and J. Kolodner 1994. Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics 137:19–39.
  • Alani, E., T. Sokolsky, B. Studamire, J. J. Miret, and J. Lahue 1997. Genetic and biochemical analysis of Msh2p-Msh6p: role of ATP hydrolysis and Msh2p-Msh6p subunit interactions in mismatch base pair recognition. Mol. Cell. Biol. 17:2436–2447.
  • Allen, D. J., A. Makhov, M. Grilley, J. Taylor, R. Thresher, P. Modrich, and J. Griffith 1997. MutS mediates heteroduplex loop formation by a translocation mechanism. EMBO J. 16:4467–4476.
  • Ban, C., and J. Yang 1998. Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell 95:541–552.
  • Bertrand, P., D. X. Tishkoff, N. Filosi, R. Dasgupta, and J. Kolodner 1998. Physical interaction between components of DNA mismatch repair and nucleotide excision repair. Proc. Natl. Acad. Sci. USA 95:14278–14283.
  • Christianson, T. W., R. S. Sikorski, M. Dante, J. H. Shero, and J. Hieter 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122.
  • Crouse, G. F. 1996. Mismatch repair systems in Saccharomyces cerevisiae, p. 411–448. In J. Nickoloff, M. Hoekstra (ed.), DNA damage and repair—biochemistry, genetics and cell biology. Humana Press, Clifton, N.J.
  • Datta, A., A. Adjiri, L. New, G. F. Crouse, and J. Jinks-Robertson 1996. Crossovers between diverged sequences are regulated by mismatch repair proteins in yeast. Mol. Cell. Biol. 16:1085–1093.
  • Drotschmann, K., A. B. Clark, H. T. Tran, M. A. Resnick, D. A. Gordenin, and J. Kunkel 1999. Mutator phenotypes of yeast strains heterozygous for mutations in the MSH2 gene. Proc. Natl. Acad. Sci. USA 96:2970–2975.
  • Drummond, J. T., G.-M. Li, M. J. Longley, and J. Modrich 1995. Mismatch recognition by an hMSH2-GTBP heterodimer and differential repair defects in tumor cells. Science 268:1909–1912.
  • Fiorentini, P., K. N. Huang, D. X. Tishkoff, R. D. Kolodner, and J. Symington 1997. Exonuclease I of Saccharomyces cerevisiae functions in mitotic recombination in vivo and in vitro. Mol. Cell. Biol. 17:2764–2773.
  • Fishel, R. A., A. Ewel, S. Lee, M. K. Lescoe, and J. Griffith 1994. Binding of mismatched microsatellite DNA sequences by the human MSH2 protein. Science 266:1403–1405.
  • Fishman-Lobell, J., and J. Haber 1992. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258:480–484.
  • Friedberg, E. C., G. C. Walker, W. Siede 1995. DNA repair and mutagenesis, p. 233–281 American Society for Microbiology, Washington, D.C.
  • Geitz, R. D., and J. Schiestl 1991. Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7:253–263.
  • Genschel, J., S. J. Littman, J. T. Drummond, and J. Modrich 1998. Isolation of MutSbeta from human cells and comparison of the mismatch repair specificities of MutSbeta and MutSalpha. J. Biol. Chem. 273:19895–19901.
  • Grilley, M., K. M. Welsh, S.-S. Su, and J. Modrich 1989. Isolation and characterization of the Escherichia coli mutL gene product. J. Biol. Chem. 264:1000–1004.
  • Gu, L., Y. Hong, S. McCulloch, H. Watanabe, and J. Li 1998. ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair. Nucleic Acids Res. 26:1173–1178.
  • Guerrette, S., T. Wilson, S. Gradia, and J. Fishel 1998. Interactions of human hMSH2 with hMSH3 and hMSH2 with hMSH6 examination of mutations found in hereditary nonpolyposis colorectal cancer. Mol. Cell. Biol. 18:6616–6623.
  • Haber, L. T., and J. Walker 1991. Altering the conserved nucleotide binding motif in the Salmonella typhimurium MutS mismatch repair protein affects both its ATPase and mismatch binding activities. EMBO J. 10:2707–2715.
  • Habraken, Y., P. Sung, L. Prakash, and J. Prakash 1996. Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3. Curr. Biol. 6:1185–1187.
  • Habraken, Y., P. Sung, L. Prakash, and J. Prakash 1997. Enhancement of MSH2-MSH3-mediated mismatch recognition by the yeast MLH1-PMS1 complex. Curr. Biol. 7:790–793.
  • Habraken, Y., P. Sung, L. Prakash, and J. Prakash 1998. ATP-dependent assembly of a ternary complex consisting of a DNA mismatch and the yeast MSH2-MSH6 and MLH1-PMS1 protein complexes. J. Biol. Chem. 273:9837–9841.
  • Henderson, S. T., and J. Petes 1992. Instability of simple sequence DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:2749–2757.
  • Herskowitz, I. 1987. Functional inactivation of genes by dominant negative mutations. Nature 329:219–222.
  • HNPCC Mutation Database. HNPCC mutation sequences. [Online.] http://www.nfdht.nl/database/msh2.htm [10 April 1999, last date accessed.]
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and J. Pease 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59.
  • Hollingsworth, N. M., L. Ponte, and J. Halsey 1995. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev. 9:1728–1739.
  • Holm, C., D. W. Meeks-Wagner, W. L. Fangman, and J. Botstein 1986. A rapid, efficient method for isolating DNA from yeast. Gene 42:169–173.
  • Human Genome Mutation Database Cardiff. HNPCC mutation sequences. [Online.] http://www.uwcm.ac.uk/uwcm/mg/ns/1/203983.html [10 April 1999, last date accessed.]
  • Hunter, N., S. R. Chambers, E. J. Louis, and J. Borts 1996. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J. 15:1726–1733.
  • Iaccarino, I., G. Marra, F. Palombo, and J. Jiricny 1998. hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSα. EMBO J. 17:2677–2686.
  • Ivanov, E. L., and J. Haber 1995. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:2245–2251.
  • Johnson, R. E., G. K. Kovvali, L. Prakash, and J. Prakash 1996. Requirement of the yeast MSH3 and MSH6 genes for MSH2 dependent genomic stability. J. Biol. Chem. 271:7285–7288.
  • Kirkpatrick, D. T., and J. Petes 1997. Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins. Nature 387:929–931.
  • Knudson, A. G. 1985. Hereditary cancer, oncogene and anti-oncogene. Cancer Res. 45:1437–1443.
  • Kolodner, R. 1996. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 10:1433–1442.
  • Lynch, H. T., and J. Smyrk 1998. An update on Lynch syndrome. Curr. Opin. Oncol. 10:349–356.
  • Malkov, V. A., I. Biswas, R. D. Camerini-Otero, and J. Hsieh 1997. Photocross-linking of the NH2-terminal region of Taq MutS protein to the major groove of a heteroduplex DNA. J. Biol. Chem. 272:23811–23817.
  • Maniatis, T., E. F. Fritsch, J. Sambrook 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Marsischky, G. T., N. Filosi, M. F. Kane, and J. Kolodner 1996. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10:407–420.
  • Marsischky, G. T., S. Lee, J. Griffith, and J. Kolodner 1999. Saccharomyces cerevisiae MSH2/6 complex interacts with Holliday junctions and facilitates their cleavage by phage resolution enzymes. J. Biol. Chem. 274:7200–7206.
  • Miller, J. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Modrich, P. 1997. Strand-specific mismatch repair in mammalian cells. J. Biol. Chem. 272:24727–24730.
  • Modrich, P., and J. Lahue 1996. Mismatch repair in replication fidelity, genetic recombination and cancer biology. Annu. Rev. Biochem. 65:101–133.
  • New, L., K. Liu, and J. Crouse 1993. The yeast gene MSH3 defines a new class of eukaryotic MutS homologues. Mol. Gen. Genet. 239:97–108.
  • Nichols, A. F., and J. Sancar 1992. Purification of PCNA as a nucleotide excision-repair protein. Nucleic Acids Res. 20:3559–3564.
  • Nicolaides, N. C., S. Littman, P. Modrich, K. W. Kinzler, and J. Vogelstein 1998. A naturally occurring hPMS2 mutation can confer a dominant negative phenotype. Mol. Cell. Biol. 18:1635–1641.
  • Palombo, F., P. Gallinari, I. Iaccarino, T. Lettieri, M. Hughes, A. D’Arrigo, O. Truong, J. J. Hsuan, and J. Jiricny 1995. GTBP, a 160 kD protein essential for mismatch binding activity in human cells. Science 268:1912–1914.
  • Palombo, F., I. Iaccarino, E. Nakajima, M. Ikejima, T. Shimada, and J. Jiricny 1996. hMutSβ, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. Curr. Biol. 6:1181–1184.
  • Pâques, F., and J. Haber 1997. Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:6765–6771.
  • Protein Sequence Database. Protein Identification Resource entry I37550. [Online.] http://www.nbrf.georgetown.edu/pir [10 April 1999, last date accessed.]
  • Qiu, J., Y. Qian, V. Chen, M.-X. Guan, and J. Shen 1999. Human exonuclease 1 functionally complements its yeast homologues in DNA recombination, RNA primer removal, and mutation avoidance. J. Biol. Chem. 274:17893–17900.
  • Reenan, R. A. G., and J. Kolodner 1992. Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Genetics 132:975–985.
  • Rose, M., P. Grisafi, and J. Botstein 1984. Structure and function of the yeast URA3 gene: expression in Escherichia coli. Gene 29:113–124.
  • Rose, M. D., F. Winston, P. Hieter 1990. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Ross-Macdonald, P., and J. Roeder 1994. Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79:1069–1080.
  • Rothstein, R. 1991. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194:281–301.
  • Saparbaev, M., L. Prakash, and J. Prakash 1996. Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae. Genetics 142:727–736.
  • Selva, E. M., L. New, G. F. Crouse, and J. Lahue 1995. Mismatch correction acts as a barrier to homeologous recombination in Saccharomyces cerevisiae. Genetics 139:1175–1188.
  • Shimodaira, H., N. Filosi, H. Shibata, T. Suzuki, P. Radice, R. Kanamaru, S. H. Friend, R. D. Kolodner, and J. Ishioka 1998. Functional analysis of human MLH1 mutations in Saccharomyces cerevisiae. Nat. Genet. 19:384–389.
  • Strand, M., T. A. Prolla, R. M. Liskay, and J. Petes 1993. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365:274–276.
  • Studamire, B., T. Quach, and J. Alani 1998. The Saccharomyces cerevisiae Msh2p and Msh6p ATPase activities are both required during mismatch repair. Mol. Cell. Biol. 18:7590–7601.
  • Sugawara, N., and J. Haber 1992. Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12:563–575.
  • Sugawara, N., F. Pâques, M. Colaiácovo, and J. Haber 1997. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc. Natl. Acad. Sci. USA 94:9214–9219.
  • Tishkoff, D. X., A. L. Boerger, P. Bertrand, N. Filosi, G. M. Gaida, M. F. Kane, and J. Kolodner 1997. Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. Proc. Natl. Acad. Sci. USA 94:7487–7492.
  • Umar, A., A. B. Buermeyer, J. A. Simon, D. C. Thomas, A. B. Clark, R. M. Liskay, and J. Kunkel 1996. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87:65–73.
  • Winston, F., C. Dollard, and J. Ricupero-Hovasse 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53–55.
  • Wu, T., and J. Marinus 1999. Deletion mutation analysis of the mutS gene in Escherichia coli. J. Biol. Chem. 274:5948–5942.
  • Wu, T.-H., and J. Marinus 1994. Dominant negative mutator mutations in the mutS gene of Escherichia coli. J. Bacteriol. 176:5393–5400.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.