17
Views
78
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Differential Regulation of the Cell Wall Integrity Mitogen-Activated Protein Kinase Pathway in Budding Yeast by the Protein Tyrosine Phosphatases Ptp2 and Ptp3

, , , &
Pages 7651-7660 | Received 30 Jun 1999, Accepted 30 Jul 1999, Published online: 28 Mar 2023

REFERENCES

  • Bartel, B., I. Wunning, and J. Varshavsky 1990. The recognition component of the N-end rule pathway. EMBO J. 9:3179–3189.
  • Brewster, J. L., T. de Valoir, N. D. Dwyer, E. Winter, and J. Gustin 1993. An osmosensing signal transduction pathway in yeast. Science 259:1760–1763.
  • Brondello, J. M., A. Brunet, J. Pouyssegur, and J. McKenzie 1997. The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44MAPK cascade. J. Biol. Chem. 272:1368–1376.
  • Brondello, J. M., F. R. McKenzie, H. Sun, N. K. Tonks, and J. Pouyssegur 1995. Constitutive MAP kinase phosphatase (MKP-1) expression blocks G1 specific gene transcription and S-phase entry in fibroblasts. Oncogene 10:1895–1904.
  • Brown-Shimer, S., K. A. Johnson, J. B. Lawrence, C. Johnson, A. Bruskin, N. R. Green, and J. Hill 1990. Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B. Proc. Natl. Acad. Sci. USA 87:5148–5152.
  • Buehrer, B. M., and J. Errede 1997. Coordination of the mating and cell integrity mitogen-activated protein kinase pathways in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:6517–6525.
  • Charbonneau, H., N. K. Tonks, S. Kumar, C. D. Diltz, M. Harrylock, D. E. Cool, E. G. Krebs, E. H. Fischer, and J. Walsh 1989. Human placenta protein-tyrosine-phosphatase: amino acid sequence and relationship to a family of receptor-like proteins. Proc. Natl. Acad. Sci. USA 86:5252–5256.
  • Chen, R. H., C. Sarnecki, and J. Blenis 1992. Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol. Cell. Biol. 12:915–927.
  • Chernoff, J., A. R. Schievella, C. A. Jost, R. L. Erikson, and J. Neel 1990. Cloning of a cDNA for a major human protein-tyrosine-phosphatase. Proc. Natl. Acad. Sci. USA 87:2735–2739.
  • Chu, Y., P. A. Solski, R. Khosravi-Far, C. J. Der, and J. Kelly 1996. The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation. J. Biol. Chem. 271:6497–6501.
  • Cobb, M. H., and J. Goldsmith 1995. How MAP kinases are regulated. J. Biol. Chem. 270:14843–14846.
  • Cowley, S., H. Paterson, P. Kemp, and J. Marshall 1994. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852.
  • Davenport, K. R., M. Sohaskey, Y. Kamada, D. E. Levin, and J. Gustin 1995. A second osmosensing signal transduction pathway in yeast. Hypotonic shock activates the PKC1 protein kinase-regulated cell integrity pathway. J. Biol. Chem. 270:30157–30161.
  • Degols, G., K. Shiozaki, and J. Russell 1996. Activation and regulation of the Spc1 stress-activated protein kinase in Schizosaccharomyces pombe. Mol. Cell. Biol. 16:2870–2877.
  • Dohmen, R. J., A. W. Strasser, C. B. Honer, and J. Hollenberg 1991. An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast 7:691–692.
  • Dohmen, R. J., P. Wu, and J. Varshavsky 1994. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263:1273–1276.
  • Doi, K., A. Gartner, G. Ammerer, B. Errede, H. Shinkawa, K. Sugimoto, and J. Matsumoto 1994. MSG5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae. EMBO J. 13:61–70.
  • Ferrigno, P., F. Posas, D. Koepp, H. Saito, and J. Silver 1998. Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. EMBO J. 17:5606–5614.
  • Flint, A. J., T. Tiganis, D. Barford, and J. Tonks 1997. Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA 94:1680–1685.
  • Gietz, R. D., and J. Sugino 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534.
  • Gonzalez, F. A., A. Seth, D. L. Raden, D. S. Bowman, F. S. Fay, and J. Davis 1993. Serum-induced translocation of mitogen-activated protein kinase to the cell surface ruffling membrane and the nucleus. J. Cell Biol. 122:1089–1101.
  • Gray, J. V., J. P. Ogas, Y. Kamada, M. Stone, D. E. Levin, and J. Herskowitz 1997. A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO J. 16:4924–4937.
  • Groom, L. A., A. A. Sneddon, D. R. Alessi, S. Dowd, and J. Keyse 1996. Differential regulation of the MAP, SAP and RK/p38 kinases by Pyst1, a novel cytosolic dual-specificity phosphatase. EMBO J. 15:3621–3632.
  • Grumont, R. J., J. E. Rasko, A. Strasser, and J. Gerondakis 1996. Activation of the mitogen-activated protein kinase pathway induces transcription of the PAC-1 phosphatase gene. Mol. Cell. Biol. 16:2913–2921.
  • Guan, K. L., and J. Butch 1995. Isolation and characterization of a novel dual specific phosphatase, HVH2, which selectively dephosphorylates the mitogen-activated protein kinase. J. Biol. Chem. 270:7197–7203.
  • Guan, K. L., and J. Dixon 1991. Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J. Biol. Chem. 266:17026–17030.
  • Guthrie, C., G. R. Fink 1991. Guide to yeast genetics and molecular biology. Academic Press, San Diego, Calif.
  • Herskowitz, I. 1995. MAP kinase pathways in yeast: for mating and more. Cell 80:187–197.
  • Hochstrasser, M., and J. Varshavsky 1990. In vivo degradation of a transcriptional regulator: the yeast alpha 2 repressor. Cell 61:697–708.
  • Horvitz, H. R., and J. Sternberg 1991. Multiple intercellular signaling systems control the development of the Caenorhabditis elegans vulva. Nature 351:535–541.
  • Hovland, P., J. Flick, M. Johnston, and J. Sclafani 1989. Galactose as a gratuitous inducer of GAL gene expression in yeasts growing on glucose. Gene 83:57–64.
  • Irie, K., M. Takase, K. S. Lee, D. E. Levin, H. Araki, K. Matsumoto, and J. Oshima 1993. MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen-activated protein kinase-kinase homologs, function in the pathway mediated by protein kinase C. Mol. Cell. Biol. 13:3076–3083.
  • Jacoby, T., H. Flanagan, A. Faykin, A. G. Seto, C. Mattison, and J. Ota 1997. Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1. J. Biol. Chem. 272:17749–17755.
  • Kamada, Y., U. S. Jung, J. Piotrowski, and J. Levin 1995. The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev. 9:1559–1571.
  • Kamada, Y., H. Qadota, C. P. Python, Y. Anraku, Y. Ohya, and J. Levin 1996. Activation of yeast protein kinase C by Rho1 GTPase. J. Biol. Chem. 271:9193–9196.
  • Kyriakis, J. M., P. Banerjee, E. Nikolakaki, T. Dai, E. A. Rubie, M. F. Ahmad, J. Avruch, and J. Woodgett 1994. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369:156–160.
  • Lee, K. S., K. Irie, Y. Gotoh, Y. Watanabe, H. Araki, E. Nishida, K. Matsumoto, and J. Levin 1993. A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol. Cell. Biol. 13:3067–3075.
  • Lee, K. S., and J. Levin 1992. Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homolog. Mol. Cell. Biol. 12:172–182.
  • Lenormand, P., C. Sardet, G. Pages, G. L’Allemain, A. Brunet, and J. Pouyssegur 1993. Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J. Cell Biol. 122:1079–1088.
  • Levin, D. E., F. O. Fields, R. Kunisawa, J. M. Bishop, and J. Thorner 1990. A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Cell 62:213–224.
  • Lewis, T., L. A. Groom, A. A. Sneddon, C. Smythe, and J. Keyse 1995. XCL100, an inducible nuclear MAP kinase phosphatase from Xenopus laevis: its role in MAP kinase inactivation in differentiated cells and its expression during early development. J. Cell Sci. 108:2885–2896.
  • Lewis, T. S., P. S. Shapiro, and J. Ahn 1998. Signal transduction through MAP kinase cascades. Adv. Cancer Res. 74:49–139.
  • Madden, K., Y. J. Sheu, K. Baetz, B. Andrews, and J. Snyder 1997. SBF cell cycle regulator as a target of the yeast PKC-MAP kinase pathway. Science 275:1781–1784.
  • Madhani, H. D., and J. Fink 1998. The riddle of MAP kinase signaling specificity. Trends Genet. 14:151–155.
  • Mansour, S. J., W. T. Matten, A. S. Hermann, J. M. Candia, S. Rong, K. Fukasawa, G. F. Vande Woude, and J. Ahn 1994. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265:966–970.
  • Marini, N. J., E. Meldrum, B. Buehrer, A. V. Hubberstey, D. E. Stone, A. Traynor-Kaplan, and J. Reed 1996. A pathway in the yeast cell division cycle linking protein kinase C (Pkc1) to activation of Cdc28 at START. EMBO J. 15:3040–3052.
  • Martin-Blanco, E., A. Gampel, J. Ring, K. Virdee, N. Kirov, A. M. Tolkovsky, and J. Martinez-Arias 1998. Puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev. 12:557–570.
  • Mattison, C. P., and I. M. Ota. Unpublished data.
  • Mazzoni, C., P. Zarov, A. Rambourg, and J. Mann 1993. The SLT2 (MPK1) MAP kinase homolog is involved in polarized cell growth in Saccharomyces cerevisiae. J. Cell Biol. 123:1821–1833.
  • Millar, J. B., V. Buck, and J. Wilkinson 1995. Pyp1 and Pyp2 PTPases dephosphorylate an osmosensing MAP kinase controlling cell size at division in fission yeast. Genes Dev. 9:2117–2130.
  • Mitchell, D. A., T. K. Marshall, and J. Deschenes 1993. Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast. Yeast 9:715–722.
  • Mizunuma, M., D. Hirata, K. Miyahara, E. Tsuchiya, and J. Miyakawa 1998. Role of calcineurin and Mpk1 in regulating the onset of mitosis in budding yeast. Nature 392:303–306.
  • Muda, M., U. Boschert, R. Dickinson, J. C. Martinou, I. Martinou, M. Camps, W. Schlegel, and J. Arkinstall 1996. MKP-3, a novel cytosolic protein-tyrosine phosphatase that exemplifies a new class of mitogen-activated protein kinase phosphatase. J. Biol. Chem. 271:4319–4326.
  • Muda, M., U. Boschert, A. Smith, B. Antonsson, C. Gillieron, C. Chabert, M. Camps, I. Martinou, A. Ashworth, and J. Arkinstall 1997. Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase, MKP-4. J. Biol. Chem. 272:5141–5151.
  • Muda, M., A. Theodosiou, C. Gillieron, A. Smith, C. Chabert, M. Camps, U. Boschert, N. Rodrigues, K. Davies, A. Ashworth, and J. Arkinstall 1998. The mitogen-activated protein kinase phosphatase-3 N-terminal noncatalytic region is responsible for tight substrate binding and enzymatic specificity. J. Biol. Chem. 273:9323–9329.
  • Muda, M., A. Theodosiou, N. Rodrigues, U. Boschert, M. Camps, C. Gillieron, K. Davies, A. Ashworth, and J. Arkinstall 1996. The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases. J. Biol. Chem. 271:27205–27208.
  • Myers, A. M., A. Tzagoloff, D. M. Kinney, and J. Lusty 1986. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45:299–310.
  • Nonaka, H., K. Tanaka, H. Hirano, T. Fujiwara, H. Kohno, M. Umikawa, A. Mino, and J. Takai 1995. A downstream target of RHO1 small GTP-binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. EMBO J. 14:5931–5938.
  • Ota, I. M., and J. Varshavsky 1992. A gene encoding a putative tyrosine phosphatase suppresses lethality of an N-end rule-dependent mutant. Proc. Natl. Acad. Sci. USA 89:2355–2359.
  • Ota, I. M. Unpublished data.
  • Rajavel, M., B. Philip, B. M. Buehrer, B. Errede, and J. Levin 1999. Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:3969–3976.
  • Reszka, A. A., R. Seger, C. D. Kiltz, E. G. Krebs, and J. Fischer 1995. Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc. Natl. Acad. Sci. USA 92:8881–8885.
  • Sambrook, J., E. F. Fritsch, T. Maniatis 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schmitt, M. E., T. A. Brown, and J. Trumpower 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18:3091–3092.
  • Sherman, F., G. R. Fink, J. B. Hicks 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shiozaki, K., and J. Russell 1995. Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature 378:739–743.
  • Spencer, S., and I. M. Ota. Unpublished data.
  • Stevenson, B. J., N. Rhodes, B. Errede, G. F. Sprague Jr.. 1992. Constitutive mutants of the protein kinase STE11 activate the yeast pheromone response pathway in the absence of the G protein. Genes Dev. 6:1293–1304.
  • Struhl, K., D. T. Stinchcomb, S. Scherer, and J. Davis 1979. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci. USA 76:1035–1039.
  • Sun, H., C. H. Charles, L. F. Lau, and J. Tonks 1993. MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75:487–493.
  • Watanabe, Y., K. Irie, and J. Matsumoto 1995. Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol. Cell. Biol. 15:5740–5749.
  • Watanabe, Y., G. Takaesu, M. Hagiwara, K. Irie, and J. Matsumoto 1997. Characterization of a serum response factor-like protein in Saccharomyces cerevisiae, Rlm1, which has transcriptional activity regulated by the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol. Cell. Biol. 17:2615–2623.
  • Wurgler-Murphy, S. M., T. Maeda, E. A. Witten, and J. Saito 1997. Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol. Cell. Biol. 17:1289–1297.
  • Yashar, B., K. Irie, J. A. Printen, B. J. Stevenson, G. F. Sprague Jr., K. Matsumoto, and J. Errede 1995. Yeast MEK-dependent signal transduction: response thresholds and parameters affecting fidelity. Mol. Cell. Biol. 15:6545–6553.
  • Zarzov, P., C. Mazzoni, and J. Mann 1996. The SLT2(MPK1) MAP kinase is activated during periods of polarized cell growth in yeast. EMBO J. 15:83–91.
  • Zhan, X. L., R. J. Deschenes, and J. Guan 1997. Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae. Genes Dev. 11:1690–1702.
  • Zipursky, S. L., and J. Rubin 1994. Determination of neuronal cell fate: lessons from the R7 neuron of Drosophila. Annu. Rev. Neurosci. 17:373–397.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.