37
Views
197
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

The Mre11-Rad50-Xrs2 Protein Complex Facilitates Homologous Recombination-Based Double-Strand Break Repair in Saccharomyces cerevisiae

, &
Pages 7681-7687 | Received 16 Jun 1999, Accepted 19 Aug 1999, Published online: 28 Mar 2023

REFERENCES

  • Ajimura, M., S.-H. Leem, and J. Ogawa 1993. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics 133:51–66.
  • Alani, E., L. Cao, and J. Kleckner 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545.
  • Alani, E., S. Subbiah, and J. Kleckner 1989. The yeast RAD50 gene encodes a predicted 153 kD protein containing a purine nucleotide-binding domain and two large heptad repeat regions. Genetics 122:47–57.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl 1989. Current protocols in molecular biology 1–3: John Wiley & Sons, New York, N.Y.
  • Barnes, G., and J. Rio 1997. DNA double-strand-break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94:867–872.
  • Boulton, S. J., and J. Jackson 1996. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15:5093–5103.
  • Bressan, D. A., H. A. Olivares, B. E. Nelms, and J. Petrini 1998. Alteration of N-terminal phosphoesterase motifs inactivates Saccharomyces cerevisiae Mre11. Genetics 150:591–600.
  • Brunborg, G., M. A. Resnick, and J. Williamson 1980. Cell-cycle-specific repair of DNA double strand breaks in Saccharomyces cerevisiae. Radiat. Res. 82:547–558.
  • Brunborg, G., and J. Williamson 1978. The relevance of the nuclear division cycle to radiosensitivity in yeast. Mol. Gen. Genet. 162:277–286.
  • Esposito, R. E. 1968. Genetic recombination in synchronized cultures of Saccharomyces cerevisiae. Genetics 59:191–210.
  • Fasullo, M. T., T. Bennett, P. AhChing, and J. Koudelik 1998. The Saccharomyces cerevisiae RAD9 checkpoint reduces the DNA damage-associated stimulation of directed translations. Mol. Cell. Biol. 18:1190–1200.
  • Furuse, M., Y. Nagase, H. Tsubouchi, K. Murakami-Murofushi, T. Shibata, and J. Ohta 1998. Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. EMBO J. 17:6412–6425.
  • Guthrie, C., G. R. Fink 1991. Methods in enzymology 194: Academic Press, Inc., San Diego, Calif.
  • Haber, J. E. 1998. The many interfaces of Mre11. Cell 95:583–586.
  • Haber, J. E. 1998. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32:561–599.
  • Hartwell, L. H., and J. Smith 1985. Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. Genetics 110:381–395.
  • Henner, W. D., S. M. Grunberg, and J. Haseltine 1982. Sites and structures of γ radiation-induced DNA strand breaks. J. Biol. Chem. 257:11750–11754.
  • Ivanov, E. L., V. G. Korolev, and J. Fabre 1992. XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132:651–664.
  • Ivanov, E. L., N. Sugawara, C. I. White, F. Fabre, and J. Haber 1994. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:3414–3425.
  • Kadyk, L. C., and J. Hartwell 1992. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132:387–402.
  • Kanaar, R., and J. Hoeijmakers 1997. Recombination and joining: different means to the same ends. Genes Funct. 1:165–174.
  • Kuzminov, A. 1995. Collapse and repair of replication forks in Escherichia coli. Mol. Microbiol. 16:373–384.
  • Lea, D. E., and J. Coulson 1947. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49:264–285.
  • Lee, S., D. Bressan, J. Petrini, and J. Haber. Unpublished data.
  • Lee, S. E., J. K. Moore, A. Holmes, K. Umezu, R. Kolodner, and J. Haber 1998. Saccharomyces Ku70, Mre11/Rad50, and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94:399–409.
  • Milne, G. T., S. Jin, K. B. Shannon, and J. Weaver 1996. Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:4189–4198.
  • Moore, J. K., and J. Haber 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2164–2173.
  • Moreau, S., J. R. Ferguson, and J. Symington 1999. The nuclease activity of mre11 is required for meiosis but not for mating-type switching, end joining, or telomere maintenance. Mol. Cell. Biol. 19:556–566.
  • Mortimer, R. K. 1958. Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiat. Res. 9:312–326.
  • Paull, T. T., and J. Gellert 1998. The 3′ to 5′ exonuclease activity of Mre11 facilitates repair of DNA double-strand breaks. Mol. Cell 1:969–979.
  • Petes, T. D., R. E. Malone, and J. Symington 1991. Recombination in yeast The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis, and energetics In J. R. Broach, J. Pringle, E. Jones (ed.), I:407–521 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Petrini, J. H. J., D. A. Bressan, and J. Yao 1997. The RAD52 epistasis group in mammalian double strand break repair. Semin. Immunol. 9:181–188.
  • Resnick, M. A., and J. Martin 1976. The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol. Gen. Genet. 143:119–129.
  • Saeki, T., I. Machida, and J. Nakai 1980. Genetic control of diploid recovery after γ-irradiation in the yeast Saccharomyces cerevisiae. Mutat. Res. 73:251–265.
  • Sikorski, R. S., and J. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Szostak, J. W., T. L. Orr-Weaver, R. J. Rothstein, and J. Stahl 1983. The double-strand break repair model for recombination. Cell 33:25–35.
  • Trujillo, K. M., S. S. Yuan, E. Y. Lee, and J. Sung 1998. Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J. Biol. Chem. 273:21447–21450.
  • Usui, T., T. Ohta, H. Oshiumi, J. Tomizawa, H. Ogawa, and J. Ogawa 1998. Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95:705–716.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.