18
Views
56
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

RelB Modulation of IκBα Stability as a Mechanism of Transcription Suppression of Interleukin-1α (IL-1α), IL-1β, and Tumor Necrosis Factor Alpha in Fibroblasts

, , , , , & show all
Pages 7688-7696 | Received 03 Mar 1999, Accepted 10 Aug 1999, Published online: 28 Mar 2023

REFERENCES

  • Baeuerle, P. A., and J. Baltimore 1996. NF-κB: ten years after. Cell 87:13–20.
  • Baeuerle, P. A., and J. Henkel 1994. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12:141–179.
  • Baldwin, A. S. Jr.. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–683.
  • Barnes, P. J., and J. Karin 1997. Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. Med. 336:1066–1071.
  • Beg, A. A., W. C. Sha, R. T. Bronson, and J. Baltimore 1995. Constitutive NF-κB activation, enhanced granulopoiesis, and neonatal lethality in IκBα-deficient mice. Genes Dev. 9:2736–2746.
  • Beutler, B., and J. Kruys 1995. Lipopolysaccharide signal transduction, regulation of tumor necrosis factor biosynthesis, and signaling by tumor necrosis factor itself. J. Cardiovasc. Pharmacol. 25 (Suppl. 2):S1–S8.
  • Bours, V., V. Azarenko, E. Dejardin, and J. Siebenlist 1994. Human RelB (I-Rel) functions as a κB site-dependent transactivating member of the family of Rel-related proteins. Oncogene 9:1699–1702.
  • Bours, V., P. R. Burd, K. Brown, J. Villalobos, S. Park, R. P. Ryseck, R. Bravo, K. Kelly, and J. Siebenlist 1992. A novel mitogen-inducible gene product related to p50/p105-NF-κB participates in transactivation through a κB site. Mol. Cell. Biol. 12:685–695.
  • Brockman, J. A., D. C. Scherer, T. A. McKinsey, S. M. Hall, X. Qi, W. Y. Lee, and J. Ballard 1995. Coupling of a signal response domain in IκBα to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15:2809–2818.
  • Brown, K., S. Gerstberger, L. Carlson, G. Franzoso, and J. Siebenlist 1995. Control of IκB-α proteolysis by site-specific, signal-induced phosphorylation. Science 267:1485–1488.
  • Brown, K., S. Park, T. Kanno, G. Franzoso, and J. Siebenlist 1993. Mutual regulation of the transcriptional activator NF-κB and its inhibitor, IκB-α. Proc. Natl. Acad. Sci. USA 90:2532–2536.
  • Burkly, L., C. Hession, L. Ogata, C. Reilly, L. A. Marconi, D. Olson, R. Tizard, R. Cate, and J. Lo 1995. Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373:531–536.
  • Carrasco, D., R. P. Ryseck, and J. Bravo 1993. Expression of relB transcripts during lymphoid organ development: specific expression in dendritic antigen-presenting cells. Development 118:1221–1231.
  • Chen, Z. J., L. Parent, and J. Maniatis 1996. Site-specific phosphorylation of IκBα by a novel ubiquitination-dependent protein kinase activity. Cell 84:853–862.
  • Cheng, J. D., R. P. Ryseck, R. M. Attar, D. Dambach, and J. Bravo 1998. Functional redundancy of the nuclear factor κB inhibitors IκBα and IκBβ. J. Exp. Med. 188:1055–1062.
  • Chomczynski, P., and J. Sacchi 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.
  • DeKoning, J., L. DiMolfetto, C. Reilly, Q. Wei, W. L. Havran, and J. Lo 1997. Thymic cortical epithelium is sufficient for the development of mature T cells in relB-deficient mice. J. Immunol. 158:2558–2566.
  • DiDonato, J., F. Mercurio, C. Rosette, J. Wu-Li, H. Suyang, S. Ghosh, and J. Karin 1996. Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16:1295–1304.
  • DiDonato, J. A., M. Hayakawa, D. M. Rothwarf, E. Zandi, and J. Karin 1997. A cytokine-responsive IκB kinase that activates the transcription factor NK-κB. Nature 388:548–554.
  • Dignam, J. D., R. M. Lebovitz, and J. Roeder 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Dobrzanski, P., R. P. Ryseck, and J. Bravo 1993. Both N- and C-terminal domains of RelB are required for full transactivation: role of the N-terminal leucine zipper-like motif. Mol. Cell. Biol. 13:1572–1582.
  • Dobrzanski, P., R. P. Ryseck, and J. Bravo 1994. Differential interactions of Rel-NF-κB complexes with IκBα determine pools of constitutive and inducible NF-κB activity. EMBO J. 13:4608–4616.
  • Drouet, C., A. N. Shakhov, and J. Jongeneel 1991. Enhancers and transcription factors controlling the inducibility of the tumor necrosis factor-α promoter in primary macrophages. J. Immunol. 147:1694–1700.
  • Ferreira, V., N. Tarantino, and J. Korner 1998. Discrimination between RelA and RelB transcriptional regulation by a dominant negative mutant of IκBα. J. Biol. Chem. 273:592–599.
  • Ghosh, S., M. J. May, and J. Kopp 1998. NF-κB and rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16:225–260.
  • Grilli, M., J. J. Chiu, and J. Lenardo 1993. NF-κB and Rel: participants in a multiform transcriptional regulatory system. Int. Rev. Cytol. 143:1–62.
  • Han, J., G. Huez, and J. Beutler 1991. Interactive effects of the tumor necrosis factor promoter and 3′-untranslated regions. J. Immunol. 146:1843–1848.
  • Imbert, V., R. A. Rupec, A. Livolsi, H. L. Pahl, E. B. Traenckner, C. Mueller-Dieckmann, D. Farahifar, B. Rossi, P. Auberger, P. A. Baeuerle, and J. Peyron 1996. Tyrosine phosphorylation of IκB-α activates NF-κB without proteolytic degradation of IκB-α. Cell 86:787–798.
  • Kirillov, A., B. Kistler, R. Mostoslavsky, H. Cedar, T. Wirth, and J. Bergman 1996. A role for nuclear NF-κB in B-cell-specific demethylation of the Igκ locus. Nat. Genet. 13:435–441.
  • Kistler, B., B. Baumann, Y. Bergman, and J. Wirth 1997. RelB is a key player for both κB-dependent transcription and demethylation in B cells. Immunobiology 198:24–34.
  • Kruys, V., P. Thompson, and J. Beutler 1993. Extinction of the tumor necrosis factor locus, and of genes encoding the lipopolysaccharide signaling pathway. J. Exp. Med. 177:1383–1390.
  • Lernbecher, T., B. Kistler, and J. Wirth 1994. Two distinct mechanisms contribute to the constitutive activation of RelB in lymphoid cells. EMBO J. 13:4060–4069.
  • Lernbecher, T., U. Muller, and J. Wirth 1993. Distinct NF-κB/Rel transcription factors are responsible for tissue-specific and inducible gene activation. Nature 365:767–770.
  • Lo, D., H. Quill, L. Burkly, B. Scott, R. D. Palmiter, and J. Brinster 1992. A recessive defect in lymphocyte or granulocyte function caused by an integrated transgene. Am. J. Pathol. 141:1237–1246.
  • Malinin, N. L., M. P. Boldin, A. V. Kovalenko, and J. Wallach 1997. MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature 385:540–544.
  • Mercurio, F., H. Zhu, B. W. Murray, A. Shevchenko, B. L. Bennett, J. Li, D. B. Young, M. Barbosa, M. Mann, A. Manning, and J. Rao 1997. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278:860–866.
  • Miyamoto, S., P. J. Chiao, and J. Verma 1994. Enhanced IκBα degradation is responsible for constitutive NF-κB activity in mature murine B-cell lines. Mol. Cell. Biol. 14:3276–3282.
  • Miyamoto, S., B. J. Seufzer, and J. Shumway 1998. Novel IκBα proteolytic pathway in WEHI231 immature B cells. Mol. Cell. Biol. 18:19–29.
  • O’Connell, M. A., B. L. Bennett, F. Mercurio, A. M. Manning, and J. Mackman 1998. Role of IKK1 and IKK2 in lipopolysaccharide signaling in human monocytic cells. J. Biol. Chem. 273:30410–30414.
  • Pettit, A. R., C. Quinn, K. P. MacDonald, L. L. Cavanagh, G. Thomas, W. Townsend, M. Handel, and J. Thomas 1997. Nuclear localization of RelB is associated with effective antigen-presenting cell function. J. Immunol. 159:3681–3691.
  • Read, M. A., A. S. Neish, M. E. Gerritsen, and J. Collins 1996. Postinduction transcriptional repression of E-selectin and vascular cell adhesion molecule-1. J. Immunol. 157:3472–3479.
  • Regnier, C. H., H. Y. Song, X. Gao, D. V. Goeddel, Z. Cao, and J. Rothe 1997. Identification and characterization of an IκB kinase. Cell 90:373–383.
  • Rothwarf, D. M., E. Zandi, G. Natoli, and J. Karin 1998. IKK-γ is an essential regulatory subunit of the IκB kinase complex. Nature 395:297–300.
  • Ryseck, R. P., P. Bull, M. Takamiya, V. Bours, U. Siebenlist, P. Dobrzanski, and J. Bravo 1992. RelB, a new Rel family transcription activator that can interact with p50–NF-κB. Mol. Cell. Biol. 12:674–684.
  • Scott, M. L., T. Fujita, H. C. Liou, G. P. Nolan, and J. Baltimore 1993. The p65 subunit of NF-κB regulates IκB by two distinct mechanisms. Genes Dev. 7:1266–1276.
  • Sha, W. C. 1998. Regulation of immune responses by NF-κB/Rel transcription factor. J. Exp. Med. 187:143–146 (Erratum, 187:661.)
  • Shattuck-Brandt, R. L., and J. Richmond 1997. Enhanced degradation of I-κBα contributes to endogenous activation of NF-κB in Hs294T melanoma cells. Cancer Res. 57:3032–3039.
  • Siebenlist, U., G. Franzoso, and J. Brown 1994. Structure, regulation and function of NF-κB. Annu. Rev. Cell Biol. 10:405–455.
  • Smith, R. S., T. J. Smith, T. M. Blieden, and J. Phipps 1997. Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. Am. J. Pathol. 151:317–322.
  • Sun, S. C., P. A. Ganchi, D. W. Ballard, and J. Greene 1993. NF-κB controls expression of inhibitor IκBα: evidence for an inducible autoregulatory pathway. Science 259:1912–1915.
  • Traenckner, E. B., H. L. Pahl, T. Henkel, K. N. Schmidt, S. Wilk, and J. Baeuerle 1995. Phosphorylation of human IκB-α on serines 32 and 36 controls IκB-α proteolysis and NF-κB activation in response to diverse stimuli. EMBO J. 14:2876–2883.
  • Tran, K., M. Merika, and J. Thanos 1997. Distinct functional properties of IκBα and IκBβ. Mol. Cell. Biol. 17:5386–5399.
  • Van Antwerp, D. J., S. J. Martin, T. Kafri, D. R. Green, and J. Verma 1996. Suppression of TNF-α-induced apoptosis by NF-κB. Science 274:787–789.
  • Verma, I. M., J. K. Stevenson, E. M. Schwarz, D. Van Antwerp, and J. Miyamoto 1995. Rel/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev. 9:2723–2735.
  • Wang, Y., L. A. Krushel, and J. Edelman 1996. Targeted DNA recombination in vivo using an adenovirus carrying the cre recombinase gene. Proc. Natl. Acad. Sci. USA 93:3932–3936.
  • Weih, F., D. Carrasco, and J. Bravo 1994. Constitutive and inducible Rel/NF-κB activities in mouse thymus and spleen. Oncogene 9:3289–3297.
  • Weih, F., D. Carrasco, S. K. Durham, D. S. Barton, C. A. Rizzo, R. P. Ryseck, S. A. Lira, and J. Bravo 1995. Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-κB/Rel family. Cell 80:331–340.
  • Weih, F., S. K. Durham, D. S. Barton, W. C. Sha, D. Baltimore, and J. Bravo 1996. Both multiorgan inflammation and myeloid hyperplasia in RelB-deficient mice are T cell dependent. J. Immunol. 157:3974–3979.
  • Weih, F., S. K. Durham, D. S. Barton, W. C. Sha, D. Baltimore, and J. Bravo 1997. p50-NF-κB complexes partially compensate for the absence of RelB: severely increased pathology in p50(−/−)relB(−/−) double-knockout mice. J. Exp. Med. 185:1359–1370.
  • Weih, F., G. Warr, H. Yang, and J. Bravo 1997. Multifocal defects in immune responses in RelB-deficient mice. J. Immunol. 158:5211–5218.
  • Woronicz, J. D., X. Gao, Z. Cao, M. Rothe, and J. Goeddel 1997. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science 278:866–869.
  • Xia, Y., and L. Feng. Unpublished observations.
  • Xia, Y., M. E. Pauza, L. Feng, and J. Lo 1997. RelB regulation of chemokine expression modulates local inflammation. Am. J. Pathol. 151:375–387.
  • Zandi, E., Y. Chen, and J. Karin 1998. Direct phosphorylation of IκB by IKKα and IKKβ: discrimination between free and NF-κB-bound substrate. Science 281:1360–1363.
  • Zandi, E., D. M. Rothwarf, M. Delhase, M. Hayakawa, and J. Karin 1997. The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell 91:243–252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.