21
Views
79
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Saccharomyces cerevisiae pol30 (Proliferating Cell Nuclear Antigen) Mutations Impair Replication Fidelity and Mismatch Repair

, , , &
Pages 7801-7815 | Received 26 May 1999, Accepted 30 Jul 1999, Published online: 28 Mar 2023

REFERENCES

  • Alani, E., S. Lee, M. F. Kane, J. Griffith, and J. Kolodner 1997. Saccharomyces cerevisiae MSH2, a mispaired base recognition protein, also recognizes Holliday junctions in DNA. J. Mol. Biol. 265:289–301.
  • Amin, N. S., and J. Holm 1996. In vivo analysis reveals that the interdomain region of the yeast proliferating cell nuclear antigen is important for DNA replication and DNA repair. Genetics 144:479–493.
  • Ayyagari, R., K. J. Impellizzeri, B. L. Yoder, S. L. Gary, and J. Burgers 1995. A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair. Mol. Cell. Biol. 15:4420–4429.
  • Bauer, G. A., and J. Burgers 1990. Molecular cloning, structure and expression of the yeast proliferating cell nuclear antigen gene. Nucleic Acids Res. 18:261–265.
  • Bauer, G. A., and J. Burgers 1988. Protein-protein interactions of yeast DNA polymerase III with mammalian and yeast proliferating cell nuclear antigen (PCNA)/cyclin. Biochim. Biophy. Acta 951:274–279.
  • Chen, C., and R. D. Kolodner. Unpublished data.
  • Chen, C., K. Umezu, and J. Kolodner 1998. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol. Cell 2:9–22.
  • Daniel, W. W. 1987. Biostatistics: a foundation for analysis in the health sciences, 5th ed. John Wiley & Sons, Inc., New York, N.Y.
  • Flores-Rozas, H. Personal communication.
  • Flores-Rozas, H., and J. Kolodner 1998. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc. Natl. Acad. Sci. USA 96:12404–12409.
  • Gary, R., D. L. Ludwig, H. L. Cornelius, M. A. MacInnes, and J. Park 1997. The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J. Biol. Chem. 272:24522–24529.
  • Genschel, J., S. J. Littman, J. T. Drummond, and J. Modrich 1998. Isolation of MutSbeta from human cells and comparison of the mismatch repair specificities of MutSbeta and MutSalpha. J. Biol. Chem. 273:19895–19901.
  • Gradia, S., D. Subramanian, T. Wilson, S. Acharya, A. Makhov, J. Griffith, and J. Fishel 1999. hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol. Cell 3:255–261.
  • Greenblatt, M. S., A. P. Grollman, and J. Harris 1996. Deletions and insertions in the p53 tumor suppressor gene in human cancers: confirmation of the DNA polymerase slippage/misalignment model. Cancer Res. 56:2130–2136.
  • Greene, C. N., and J. Jinks-Robertson 1997. Frameshift intermediates in homopolymer runs are removed efficiently by yeast mismatch repair proteins. Mol. Cell. Biol. 17:2844–2850.
  • Gu, L., Y. Hong, S. McCulloch, H. Watanabe, and J. Li 1998. ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair. Nucleic Acids Res. 25:1173–1178.
  • Hartwell, L. H., and J. Smith 1985. Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. Genetics 110:381–395.
  • Hindges, R., and J. Hubscher 1997. DNA polymerase delta, an essential enzyme for DNA transactions. Biol. Chem. 378:345–362.
  • Holm, C., T. Stearns, and J. Botstein 1989. DNA topoisomerase II must act at mitosis to prevent nondisjunction and chromosome breakage. Mol. Cell. Biol. 9:159–168.
  • Johnson, R. E., G. K. Kovvali, S. N. Guzder, N. S. Amin, C. Holm, Y. Habraken, P. Sung, L. Prakash, and J. Prakash 1996. Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair. J. Biol. Chem. 271:27987–27990.
  • Kaiser, C., S. Michaelis, and J. Mitchel 1994. A ten minute DNA prep from yeast. Methods Yeast Genet. 1994:141–143.
  • Kelman, Z., and J. Hurwitz 1998. Protein-PCNA interactions: a DNA-scanning mechanism. Trends Biochem. Sci. 1998:236–238.
  • Kokoska, R. J., L. Stefanovic, A. B. Buermeyer, R. M. Liskay, and J. Petes 1999. A mutation of the yeast gene encoding PCNA destabilizes both microsatellite and minisatellite DNA sequences. Genetics 151:511–519.
  • Kokoska, R. J., L. Stefanovic, H. T. Tran, M. A. Resnick, D. A. Gordenin, and J. Petes 1998. Destabilization of yeast micro- and minisatellite DNA sequences by mutations affecting a nuclease involved in Okazaki fragment processing (rad27) and DNA polymerase δ (pol3-t). Mol. Cell. Biol. 18:2779–2788.
  • Kolodner, R. 1996. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 10:1433–1442.
  • Kolodner, R. D., and J. Marsischky 1999. Eukaryotic DNA mismatch repair. Curr. Opin. Genet. Dev. 9:89–96.
  • Kong, X. P., R. Onrust, M. O’Donnell, and J. Kuriyan 1992. Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme, a sliding DNA clamp. Cell 69:425–437.
  • Kramer, B., W. Kramer, M. S. Williamson, and J. Fogel 1989. Heteroduplex DNA correction in Saccharomyces cerevisiae is mismatch specific and requires functional PMS genes. Mol. Cell. Biol. 9:4432–4440.
  • Krishna, T. S. R., X. P. Kong, S. Gary, P. Burgers, and J. Kuriyan 1994. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79:1233–1243.
  • Kunkel, T. A. 1992. DNA replication fidelity. J. Biol. Chem. 267:18251–18254.
  • Kunkel, T. A. 1995. DNA-mismatch repair. The intricacies of eukaryotic spell-checking. Curr. Biol. 5:1091–1094.
  • Lea, D. E., and J. Coulson 1948. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49:264–285.
  • Lee, S. H. 1993. The 3′-5′ exonuclease of human DNA polymerase delta (pol delta) is regulated by pol delta accessory factors and deoxyribonucleoside triphosphates. Nucleic Acids Res. 21:1935–1939.
  • Li, X., J. Li, J. Harrington, M. R. Lieber, and J. Burgers 1995. Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J. Biol. Chem. 270:22109–22112.
  • Lieber, M. R. 1997. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination, and repair. Bioessays 19:233–240.
  • Lin, Y. L., M. K. Shivji, C. Chen, R. Kolodner, R. D. Wood, and J. Dutta 1998. The evolutionarily conserved zinc finger motif in the largest subunit of human replication protein A is required for DNA replication and mismatch repair but not nucleotide excision repair. J. Biol. Chem. 273:1453–1461.
  • Liu, V., D. Bhaumik, and J. Wang 1999. Mutator phenotype induced by aberrant replication. Mol. Cell. Biol. 19:1126–1135.
  • Marsischky, G. T., N. Filosi, M. F. Kane, and J. Kolodner 1996. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10:407–420.
  • McGraw, B. R., and J. Marinus 1980. Isolation and characterization of Dam+ revertants and suppressor mutations that modify secondary phenotypes of dam-3 strains of Escherichia coli K-12. Mol. Gen. Genet. 178:309–315.
  • Merrill, B. J., and J. Holm 1998. The RAD52 recombinational repair pathway is essential in pol30 (PCNA) mutants that accumulate small single-stranded DNA fragments during DNA synthesis. Genetics 148:611–624.
  • Modrich, P. 1987. DNA mismatch correction. Annu. Rev. Biochem. 56:435–466.
  • Modrich, P., and J. Lahue 1996. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem. 65:101–133.
  • Morrison, A., and J. Sugino 1994. The 3′→5′ exonucleases of both DNA polymerase delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae. Mol. Gen. Genet. 242:289–296.
  • Mozzherin, D. J., M. McConnell, M. V. Jasko, A. A. Krayevsky, C. K. Tan, K. M. Downey, and J. Fisher 1996. Proliferating cell nuclear antigen promotes misincorporation catalyzed by calf thymus DNA polymerase delta. J. Biol. Chem. 271:31711–31717.
  • Muller-Weeks, S. J., and J. Caradonna 1996. Specific association of cyclin-like uracil-DNA glycosylase with the proliferating cell nuclear antigen. Exp. Cell Res. 226:346–355.
  • Osman, F., and J. Subramani 1998. Double-strand break-induced recombination in eukaryotes. Prog. Nucleic Acid Res. Mol. Biol. 58:263–299.
  • Peltomaki, P., and J. Vasen 1997. Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. Gastroenterology 113:1146–1158.
  • Ross, C. A., R. L. Margolis, M. W. Becher, J. D. Wood, S. Engelender, J. K. Cooper, and J. Sharp 1998. Pathogenesis of neurodegenerative diseases associated with expanded glutamine repeats: new answers, new questions. Prog. Brain Res. 117:397–419.
  • Seigneur, M., V. Bidnenko, S. D. Ehrlich, and J. Michel 1998. RuvAB acts at arrested replication forks. Cell 95:419–430.
  • Tishkoff, D. X., N. Filosi, G. M. Gaida, and J. Kolodner 1997. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88:253–263.
  • Tran, H. T., N. P. Degtyareva, N. N. Koloteva, A. Sugino, H. Masumoto, D. A. Gordenin, and J. Resnick 1995. Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes. Mol. Cell. Biol. 15:5607–5617.
  • Tran, H. T., D. A. Gordenin, and J. Resnick 1996. The prevention of repeat-associated deletions in Saccharomyces cerevisiae by mismatch repair depends on size and origin of deletions. Genetics 143:1579–1587.
  • Tran, H. T., J. D. Keen, M. Kricker, M. A. Resnick, and J. Gordenin 1997. Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol. Cell. Biol. 17:2859–2865.
  • Tsurimoto, T. 1998. PCNA, a multifunctional ring on DNA. Biochim. Biophys. Acta 1443:23–39.
  • Umar, A., A. B. Buermeyer, J. A. Simon, D. C. Thomas, A. B. Clark, R. M. Liskay, and J. Kunkel 1996. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87:65–73.
  • Vogelstein, B., and J. Kinzler 1993. The multistep nature of cancer. Trends Genet. 9:138–141.
  • Wach, A., A. Brachat, R. Pohlmann, and J. Philippsen 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808.
  • Waga, S., and J. Stillman 1994. Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369:207–212.
  • Wu, X., J. Li, X. Li, C. L. Hsieh, P. M. Burgers, and J. Lieber 1996. Processing of branched DNA intermediates by a complex of human FEN-1 and PCNA. Nucleic Acids Res. 24:2036–2043.
  • Xie, Y., C. Counter, and J. Alani 1999. Characterization of the repeat-tract instability and mutator phenotypes conferred by a Tn3 insertion in RFC1, the large subunit of the yeast clamp loader. Genetics 151:499–509.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.