9
Views
28
CrossRef citations to date
0
Altmetric
Gene Expression

Mutagenesis of SNM1, Which Encodes a Protein Component of the Yeast RNase MRP, Reveals a Role for This Ribonucleoprotein Endoribonuclease in Plasmid Segregation

, , &
Pages 7857-7869 | Received 01 Jun 1999, Accepted 29 Jul 1999, Published online: 28 Mar 2023

REFERENCES

  • Allmang, C., Y. Henry, J. P. Morrissey, H. Wood, E. Petfalski, and J. Tollervey 1996. Processing of the yeast pre-rRNA at sites A(2) and A(3) is linked. RNA 2:63–73.
  • Baldacci, G., B. Chérif-Zahar, and J. Bernardi 1984. The initiation of DNA replication in the mitochondrial genome of yeast. EMBO J. 3:2115–2120.
  • Cerio, M., and M. E. Schmitt. Unpublished data.
  • Chamberlain, J. R., Y. Lee, W. S. Lane, and J. Engelke 1998. Purification and characterization of the nuclear RNase P holoenzyme complex reveals extensive subunit overlap with RNase MRP. Genes Dev. 12:1678–1690.
  • Chang, D. D., and J. Clayton 1987. A mammalian mitochondrial RNA processing activity contains nucleus-encoded RNA. Science 235:1178–1184.
  • Chang, D. D., and J. Clayton 1987. A novel endoribonuclease cleaves at a priming site of mouse mitochondrial DNA replication. EMBO J. 6:409–417.
  • Chang, D. D., and J. Clayton 1989. Mouse RNAase MRP RNA is encoded by a nuclear gene and contains a decamer sequence complementary to a conserved region of mitochondrial RNA substrate. Cell 56:131–139.
  • Chu, S., R. H. Archer, J. M. Zengel, and J. Lindahl 1994. The RNA of RNase MRP is required for normal processing of ribosomal RNA. Proc. Natl. Acad. Sci. USA 18:659–663.
  • Chu, S., J. M. Zengel, and J. Lindahl 1997. A novel protein shared by RNase MRP and RNase P. RNA 3:382–391.
  • Clayton, D. A. 1994. A nuclear function for RNase MRP. Proc. Natl. Acad. Sci. USA 91:4615–4617.
  • Dichtl, B., and J. Tollervey 1997. Pop3p is essential for the activity of the RNase MRP and RNase P. EMBO J. 16:417–429.
  • Dunn, B., P. Szauter, M. L. Pardue, and J. Szostak 1984. Transfer of yeast telomeres to linear plasmids by recombination. Cell 39:191–201.
  • Felici, F., G. Cesareni, and J. Hughes 1989. The most abundant small cytoplasmic RNA of Saccharomyces cerevisiae has an important function required for normal growth. Mol. Cell. Biol. 9:3260–3268.
  • Firoozan, M., C. M. Grant, J. A. Duarte, and J. Tuite 1991. Quantitation of readthrough of termination codons in yeast using a novel gene fusion assay. Yeast 7:173–183.
  • Forster, A. C., and J. Altman 1990. Similar cage-shaped structure for the RNA components of all ribonuclease P and ribonuclease MRP enzymes. Cell 62:407–409.
  • Gietz, R., and J. Sugino 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534.
  • Hardy, C. F., and J. Pautz 1996. A novel role for Cdc5p in DNA replication. Mol. Cell. Biol. 16:6775–6782.
  • Henry, Y., H. Wood, J. P. Morrissey, E. Petfalski, S. Kearsey, and J. Tollervey 1994. The 5′ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. EMBO J. 13:2452–2463.
  • Hill, J. H., A. M. Meyers, T. J. Koerner, and J. Tzagoloff 1986. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167.
  • Hogan, E., and J. Koshland 1992. Addition of extra origins of replication to a minichromosome suppresses its mitotic loss in cdc6 and cdc14 mutants of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89:3098–3102.
  • Jacobson, M. R., L. G. Cao, Y. L. Wang, and J. Pederson 1995. Dynamic localization of RNase MRP RNA in the nucleolus observed by fluorescent RNA cytochemistry in living cells. J. Cell Biol. 131:1649–1658.
  • Kilmartin, J. V., B. Wright, and J. Milstein 1982. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J. Cell Biol. 93:576–582.
  • Kopczynski, J. B., A. C. Raff, and J. Bonner 1992. Translational readthrough at nonsense mutations in the HSF1 gene of Saccharomyces cerevisiae. Mol. Gen. Genet. 234:369–378.
  • Lee, D. Y., and J. Clayton 1996. Properties of a primer RNA-DNA hybrid at the mouse mitochondrial DNA leading-strand origin of replication. J. Biol. Chem. 271:24262–24269.
  • Lee, D. Y., and J. Clayton 1997. RNase mitochondrial RNA processing correctly cleaves a novel R loop at the mitochondrial DNA leading-strand origin of replication. Genes Dev. 11:582–592.
  • Lee, D. Y., and J. Clayton 1998. Initiation of mitochondrial DNA replication by transcription and R-loop processing. J. Biol. Chem. 273:30614–30621.
  • Li, K., C. S. Smagula, W. J. Parsons, J. A. Richardson, M. Gonzalez, H. K. Hagler, and J. Williams 1994. Subcellular partitioning of MRP RNA assessed by ultrastructural and biochemical analysis. J. Cell Biol. 124:871–882.
  • Liebman, S. W., F. Sherman, and J. Stewart 1976. Isolation and characterization of amber suppressors in yeast. Genetics 82:251–272.
  • Lygerou, Z., C. Allmang, D. Tollervey, and J. Seraphin 1996. Accurate processing of a eukaryotic precursor ribosomal RNA by ribonuclease MRP in vitro. Science 272:268–270.
  • Lygerou, Z., P. Mitchell, E. Petfalski, B. Seraphin, and J. Tollervey 1994. The POP1 gene encodes a protein component common to the RNase MRP and RNase P ribonucleoproteins. Genes Dev. 8:1423–1433.
  • Markwell, M. A. K., S. M. Haas, L. L. Bieber, and J. Tolbert 1978. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87:206–210.
  • Marmorstein, R., M. Carey, M. Ptashne, and J. Harrison 1992. DNA recognition by GAL4: structure of a protein-DNA complex. Nature 356:408–414.
  • Morrissey, J. P., and J. Tollervey 1995. Birth of the snoRNPs: the evolution of RNase MRP and the eukaryotic pre-rRNA-processing system. Trends Biochem. Sci. 20:78–82.
  • Mortimer, R. K., and J. Gilmore 1968. Suppressors and suppressible mutations in yeast. Adv. Biol. Med. Phys. 12:319–331.
  • Muhlrad, D., R. Hunter, and J. Parker 1992. A rapid method for localized mutagenesis of yeast genes. Yeast 8:79–82.
  • Paluh, J. L., and J. Clayton 1996. A functional dominant mutation in Schizosaccharomyces pombe RNase MRP RNA affects nuclear RNA processing and requires the mitochondrial-associated nuclear mutation ptp1-1 for viability. EMBO J. 15:4723–4733.
  • Pringle, J. R., R. A. Preston, E. M. Adams, T. Sterns, D. G. Drubin, B. K. Haarer, and J. Jones 1989. Fluorescence microscopy methods for yeast. Methods Cell Biol. 31:357–435.
  • Reddy, R., and J. Shimba 1995. –1996. Structural and functional similarities between MRP and RNase P. Mol. Biol. Rep. 22:81–85.
  • Reilly, T. H., and J. Schmitt 1995. –1996. The yeast, Saccharomyces cerevisiae, RNase P/MRP ribonucleoprotein endoribonuclease family. Mol. Biol. Rep. 22:87–93.
  • Reimer, G., I. Raska, V. Scheer, and J. Tan 1988. Immunolocalization of 7-2 ribonucleoprotein in the granular component of the nucleolus. Exp. Cell Res. 176:117–128.
  • Rose, M., P. Novick, J. H. Thomas, D. Botstein, and J. Fink 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243.
  • Rubin, G. M. 1974. Three forms of the 5.8S ribosomal RNA species in Saccharomyces cerevisiae. Eur. J. Biochem. 41:197–202.
  • Sambrook, J., E. F. Fritsch, T. Maniatis 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schmitt, M. E., and J. Clayton 1992. Yeast site-specific ribonucleoprotein endoribonuclease MRP contains an RNA component homologous to mammalian RNase MRP RNA and essential for cell viability. Genes Dev. 6:1975–1985.
  • Schmitt, M. E., and J. Clayton 1993. Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:7935–7941.
  • Schmitt, M. E., and J. Clayton 1994. Isolation of a unique protein component of the yeast RNase MRP: an RNA-binding protein with a zinc-cluster domain. Genes Dev. 8:2617–2628.
  • Schmitt, M. E., J. L. Bennett, D. J. Dairaghi, and J. Clayton 1993. Secondary structure of RNase MRP RNA as predicted by phylogenetic comparison. FASEB J. 7:208–213.
  • Schmitt, M. E., T. A. Brown, and J. Trumpower 1990. A rapid, improved method for isolation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18:3091–3092.
  • Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194:3–21.
  • Shou, W., J. H. Seol, A. Shevchenko, C. Baskerville, D. Moazed, Z. W. S. Chen, J. Jang, A. Shevchenko, H. Charbonneau, and J. Deshaies 1999. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97:233–244.
  • Sikorski, R. S., and J. Boeke 1991. In vitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast. Methods Enzymol. 194:302–318.
  • Sikorski, R. S., and J. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Stohl, L. L., and J. Clayton 1992. Saccharomyces cerevisiae contains an RNase MRP that cleaves at a conserved mitochondrial RNA sequence implicated in replication priming. Mol. Cell. Biol. 12:2561–2569.
  • Stolc, V., and J. Altman 1997. Rpp1, an essential protein subunit of nuclear RNase P required for processing of precursor tRNA and 35S precursor rRNA in Saccharomyces cerevisiae. Genes Dev. 11:2414–2425.
  • Swaminathan, K., P. Flynn, R. J. Reece, and J. Marmorstein 1997. Crystal structure of a PUT3-DNA complex reveals a novel mechanism for DNA recognition by a protein containing a Zn2Cys6 binuclear cluster. Nat. Struct. Biol. 4:751–759.
  • Tavernarakis, N., D. Alexandraki, P. Liodis, D. Tzamarias, and J. Thireos 1996. Gene overexpression reveals alternative mechanisms that induce GCN4 mRNA translation. Gene 179:271–277.
  • Toyn, J. H., and J. Johnston 1993. Spo12 is a limiting factor that interacts with the cell cycle protein kinases Dbf2 and Dbf20, which are involved in mitotic chromatid disjunction. Genetics 135:963–971.
  • Van Dyck, E., and J. Clayton 1998. Transcription-dependent DNA transactions in the mitochondrial genome of a yeast hypersuppressive petite mutant. Mol. Cell. Biol. 18:2976–2985.
  • Visintin, R., E. Hwang, and J. Amon 1999. Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398:818–823.
  • Wickner, R. B. 1996. Prions and RNA viruses of Saccharomyces cerevisiae. Annu. Rev. Genet. 30:109–139.
  • Xu, B., and J. Clayton 1995. A persistent RNA-DNA hybrid is formed during transcription at a phylogenetically conserved mitochondrial DNA sequence. Mol. Cell. Biol. 15:580–589.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.