19
Views
70
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Independent Repressor Domains in ZEB Regulate Muscle and T-Cell Differentiation

&
Pages 7961-7971 | Received 05 Feb 1999, Accepted 30 Aug 1999, Published online: 28 Mar 2023

REFERENCES

  • Amacher, S. L., J. N. Buskin, and J. Hauschka 1993. Multiple regulatory elements contribute differentially to muscle creatine kinase enhancer activity in skeletal and cardiac muscle. Mol. Cell. Biol. 13:2753–2764.
  • Bassuk, A. G., and J. Leiden 1997. The role of Ets transcription factors in the development and function of the mammalian immune system. Adv. Immunol. 64:65–104.
  • Baylies, M. K., and J. Bate 1996. Twist: a myogenic switch in Drosophila. Science 272:1481–1484.
  • Benezra, R., R. L. Davis, D. Lockshon, D. L. Turner, and J. Weintraub 1990. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61:49–59.
  • Black, B. L., J. F. Martin, and J. Olson 1995. The mouse MRF4 promoter is trans-activated directly and indirectly by muscle-specific transcription factors. J. Biol. Chem. 270:2889–2892.
  • Bour, B. A., M. A. O’Brien, W. L. Lockwood, E. S. Goldstein, R. Bodmer, P. H. Taghert, S. M. Abmayr, and J. Nguyen 1995. Drosophila Mef2, a transcription factor that is essential for myogenesis. Genes Dev. 15:730–741.
  • Broihier, H., L. Moore, M. Doren, S. Newman, and J. Lehmann 1998. zfh-1 is required for germ cell migration and gonadal mesoderm development in Drosophila. Development 125:655–666.
  • Cabanillas, A. M., and J. Darling 1996. Alternative splicing gives rise to two isoforms of Zfhep, a zinc finger/homeodomain protein that binds T3-response elements. DNA Cell Biol. 15:643–651.
  • Chakravarti, D., V. Ogryzko, H. Y. Kao, A. Nash, H. Chen, Y. Nakatani, and J. Evans 1999. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 97:393–403.
  • Chawla, S., G. E. Hardingham, D. R. Quinn, and J. Bading 1998. CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science 281:1505–1509.
  • Chen, C. M. A., N. Kraut, M. Groudine, and J. Weintraub 1996. I-mf, a novel myogenic repressor, interacts with members of the MyoD family. Cell 86:731–741.
  • Chin, E. R., E. N. Olson, J. A. Richardson, Q. Yang, C. Humphries, J. M. Shelton, H. Wu, W. Zhu, R. Bassel-Duby, and J. Williams 1998. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 12:2499–2509.
  • Cripps, R. M., B. L. Black, B. Zhao, C. L. Lien, R. A. Schulz, and J. Olson 1998. The myogenic regulatory gene Mef2 is a direct target for transcriptional activation by Twist during Drosophila myogenesis. Genes Dev. 12:422–434.
  • Dai, P., H. Akimaru, Y. Tanaka, D. X. Hou, T. Yasukawa, C. Kanei-Ishii, T. Takahashi, and J. Ishii 1996. CBP as a transcriptional coactivator of c-Myb. Genes Dev. 10:528–540.
  • Edmondson, D. G., T. C. Cheng, P. Cserjevi, T. Chakrabarty, and J. Olson 1992. Analysis of the myogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2. Mol. Cell. Biol. 12:3665–3677.
  • Fortini, M. E., Z. C. Lai, and J. Rubin 1991. The Drosophila zfh-1 and zfh-2 genes encode novel proteins containing both zinc-finger and homeodomain motifs. Mech. Dev. 34:113–122.
  • Franklin, A. J., T. L. Jetton, K. D. Shelton, and J. Magnuson 1994. BZP, a novel serum-responsive zinc finger protein that inhibits gene transcription. Mol. Cell. Biol. 14:6773–6788.
  • Funahashi, J., R. Seikido, K. Murai, Y. Kamachi, and J. Kondoh 1993. Delta-crystallin enhancer binding protein delta EF1 is a zinc finger-homeodomain protein implicated in postgastrulation embryogenesis. Development 119:433–446.
  • Genetta, T., and J. Kadesch 1996. Cloning of a cDNA encoding a mouse transcriptional repressor displaying striking sequence conservation across vertebrates. Gene 169:289–290.
  • Genetta, T., D. Ruezinsky, and J. Kadesch 1994. Displacement of an E box-binding repressor by basic helix-loop-helix proteins: implications for B-cell specificity of the immunoglobulin heavy-chain enhancer. Mol. Cell. Biol. 14:6153–6163.
  • Gray, S., and J. Levine 1996. Transcriptional repression in development. Curr. Opin. Cell Biol. 8:358–364.
  • Gray, S., P. Szymanski, and J. Levine 1994. Short-range repression permits multiple enhancers to function autonomously within a complex promoter. Genes Dev. 8:1829–1838.
  • Gray, S., and J. Levine 1996. Short-range transcriptional repressors mediate both quenching and direct repression within complex loci in Drosophila. Genes Dev. 10:700–710.
  • Gregoire, J. M., and J. Romeo 1999. T-cell expression of the human GATA-3 gene is regulated by a non-lineage-specific silencer. J. Biol. Chem. 274:6567–6578.
  • Han, J., Y. Jiang, Z. Li, V. V. Kravchenko, and J. Ulevitch 1997. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386:296–299.
  • Hanna-Rose, W., and J. Hansen 1996. Active repression mechanisms of eukaryotic transcriptional repressors. Trends Gen. 12:229–234.
  • Hanna-Rose, W., J. D. Licht, and J. Hansen 1997. Two evolutionary conserved repression domains in the Drosophila Kruppel protein differ in activator specificity. Mol. Cell. Biol. 17:4820–4829.
  • Hassig, C. A., T. C. Fleischer, A. N. Billin, S. L. Schreiber, and J. Ayer 1997. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89:341–347.
  • Higashi, Y., H. Moribe, T. Takagi, R. Sekido, K. Kawakami, H. Kikutani, and J. Kondoh 1997. Impairment of T cell development in deltaEF1 mutant mice. J. Exp. Med. 185:1467–1479.
  • Johnson, A. D. 1995. The price of repression. Cell 81:655–658.
  • Korzus, E., J. Torchia, D. W. Rose, L. Xu, R. Kurokawa, E. M. McInerney, T.-M. Mullen, C. K. Glass, and J. Rosenfeld 1998. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279:703–707.
  • Lai, Z., M. E. Fortini, and J. Rubin 1991. The embryonic expression patterns of zfh-1 and zfh-2, two Drosophila genes encoding novel zinc-finger homeodomain proteins. Mech. Dev. 34:123–134.
  • Lai, Z., E. Rushton, M. Bate, and J. Rubin 1993. Loss of function of the Drosophila zfh-1 gene results in abnormal development of mesodermally derived tissues. Proc. Natl. Acad. Sci. USA 90:4122–4126.
  • Lilly, B., B. Zhao, G. Ranganayakulu, B. M. Paterson, R. A. Schulz, and J. Olson 1995. Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. Science 267:688–693.
  • Lobb, R. R., and J. Hemler 1994. The pathophysiologic role of alpha 4 integrins in vivo. J. Clin. Investig. 94:1722–1728.
  • Luo, C., E. Burgeon, and J. Rao 1996. Mechanisms of transactivation by nuclear factor of activated T cells-1. J. Exp. Med. 184:141–147.
  • Luo, R. X., A. A. Postigo, and J. Dean 1998. Rb interacts with histone deacetylase to repress transcription. Cell 92:463–473.
  • Luo, R. X., and J. Dean 1999. Chromatin remodeling and transcriptional regulation. J. Natl. Cancer Inst. 91:1288–1294.
  • Mao, S., G. A. Neale, and J. Goorha 1997. T-cell proto-oncogene rhombotin-2 is a complex transcription regulator containing multiple activation and repression domains. J. Biol. Chem. 272:5594–5599.
  • McCracken, S., S. Leung, R. Bosselut, J. Ghysdael, and J. Miyamoto 1994. Myb and Ets related transcription factors are required for activity of the human lck type I promoter. Oncogene 9:3609–3615.
  • Metz, T., and J. Graf 1991. Fusion of the nuclear oncoproteins v-Myb and v-Ets is required for the leukomogenicity of E26 virus. Cell 66:95–105.
  • Metz, T., and J. Graf 1991. v-myb and v-ets transform chicken erythroid cells and cooperate both in trans and in cis to induce distinct differentiation phenotypes. Genes Dev. 5:369–380.
  • Mink, S., B. Haenig, and J. Klempnauer 1997. Interaction and functional collaboration of p300 and C/EBPbeta. Mol. Cell. Biol. 17:6609–6617.
  • Molkentin, J. D., B. L. Black, J. F. Martin, and J. Olson 1995. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83:1125–1136.
  • Mucenski, M. L., K. McLain, A. B. Kier, S. H. Swerdlow, C. M. Schreiner, T. A. Miller, D. W. Pietryga, W. J. Scott Jr., and J. Potter 1991. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65:677–689.
  • Ogbourne, S., and J. Antalis 1998. Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes. Biochem. J. 331:1–14.
  • Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and J. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959.
  • Ornatsky, O. I., J. J. Andreucci, and J. McDermott 1997. A dominant-negative form of transcription factor MEF2 inhibit myogenesis. J. Biol. Chem. 272:33271–33278.
  • Postigo, A. A., and J. Dean 1997. ZEB, a vertebrate homologue of Drosophila zfh-1, is a negative regulator of muscle differentiation. EMBO J. 16:3935–3943.
  • Postigo, A. A., A. M. Sheppard, M. L. Mucenski, and J. Dean 1997. c-myb and ets factors synergize to overcome transcriptional repression by ZEB. EMBO J. 16:3924–3934.
  • Postigo, A. A., E. Ward, J. B. Skeath, and J. Dean 1999. zfh-1, the Drosophila homologue of ZEB, is a transcriptional repressor that regulates somatic myogenesis. Mol. Cell. Biol. 19:7255–7263.
  • Sartorelli, V., J. Huang, Y. Hamamori, and J. Kedes 1997. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol. 117:1010–1026.
  • Sauer, F., and J. Jackle 1991. Concentration-dependent transcriptional activation or repression by Kruppel from a single binding site. Nature 353:563–566.
  • Sawada, S., J. D. Scarborough, N. Killeen, and J. Littman 1994. A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell 77:917–929.
  • Scott, E. W., M. C. Simon, J. Anastasi, and J. Singh 1994. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265:1573–1577.
  • Sekido, R., K. Murai, J. Funahashi, Y. Kamachi, A. Fujisawa-Sehara, K. Nabeshima, and J. Kondoh 1994. The delta-crystallin enhancer-binding protein delta EF1 is a repressor of E2-box-mediated gene activation. Mol. Cell. Biol. 14:5692–5700.
  • Sekido, R., T. Takagi, M. Okanami, H. Moribe, M. Yamamura, Y. Higashi, and J. Kondoh 1996. Organization of the gene encoding transcriptional repressor dEF1 and cross-species conservation of its domains. Gene 173:227–232.
  • Simon, A. M., and J. Burdens 1993. An E box mediates activation and repression of the acetylcholine receptor delta-subunit gene during myogenesis. Mol. Cell. Biol. 13:5133–5140.
  • Siu, G., A. L. Wurster, J. S. Lipsick, and J. Hedrick 1992. Expression of the CD4 gene requires a Myb transcription factor. Mol. Cell. Biol. 12:1592–1604.
  • Siu, G., A. L. Wurster, D. D. Duncan, T. M. Soliman, and J. Hedrick 1994. A transcriptional silencer controls the developmental expression of the CD4 gene. EMBO J. 13:3570–3579.
  • Spicer, D. B., J. Rhee, W. L. Cheung, and J. Lassar 1996. Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist. Science 272:1476–1480.
  • Stein, R. W., M. Corrigan, P. Yaciuk, J. Whelan, and J. Moran 1990. Analysis of E1A-mediated growth regulation functions: binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J. Virol. 64:4421–4427.
  • Su, G. H., H. M. Chen, N. Muthusamy, L. A. Garrett-Sinha, D. Baunoch, D. G. Tenen, and J. Simon 1997. Defective B cell receptor-mediated responses in mice lacking the Ets protein, Spi-B. EMBO J. 16:7118–7129.
  • Takagi, T., H. Moribe, H. Kondoh, and J. Higashi 1998. DeltaEF1, a zinc finger and homeodomain transcription factor, is required for skeleton patterning in multiple lineages. Development 125:21–31.
  • Tapscott, S. J., A. B. Lassar, and J. Weintraub 1992. A novel myoblast enhancer element mediates MyoD transcription. Mol. Cell. Biol. 12:4994–5003.
  • Thayer, M. J., and J. Weintraub 1990. Activation and repression of myogenesis in somatic cell hybrids: evidence for trans-negative regulation of MyoD in primary fibroblasts. Cell 63:23–32.
  • Tokumitsu, H., H. Enslen, and J. Soderling 1995. Characterization of a Ca2+/calmodulin-dependent protein kinase cascade. Molecular cloning and expression of calcium/calmodulin-dependent protein kinase kinase. J. Biol. Chem. 270:19320–19324.
  • Weintraub, S. J., K. N. Chow, R. X. Luo, S. H. Zhang, S. He, and J. Dean 1995. Mechanism of active transcriptional repression by the retinoblastoma protein. Nature 375:812–815.
  • Williams, T. M., D. Moolten, J. Burlein, J. Romano, R. Bhaerman, A. Godillot, M. Mellon, F. J. Rauscher, and J. Kant 1991. Identification of a zinc finger protein that inhibits IL-2 gene expression. Science 254:1791–1794.
  • Williams, T. M., G. Montoya, Y. Wu, R. L. Eddy, M. G. Byers, and J. Shows 1992. The TCF8 gene encoding a zinc finger protein (Nil-2-a) resides on human chromosome 10p11.2. Genomics 14:194–196.
  • Yamamoto, H., F. Kihara-Negishi, T. Yamada, Y. Hashimoto, and J. Oikawa 1998. Physical and functional interactions between the transcription factor PU.1 and the activator CBP. Oncogene 18:1495–1501.
  • Yang, C., L. H. Shapiro, M. Rivera, A. Kumar, and J. Brindle 1998. A role for CREB binding protein and p300 transcriptional coactivators in ets-1 transactivation functions. Mol. Cell. Biol. 18:2218–2229.
  • Yang, X. J., V. V. Ogryzko, J. Nishikawa, B. H. Howard, and J. Nakatani 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324.
  • Yasui, D. H., T. Genetta, T. Kadesch, T. M. Williams, S. L. Swain, L. V. Tsui, and J. Huber 1998. Transcriptional repression of the IL-2 gene in Th cells by ZEB. J. Immunol. 160:4433–4440.
  • Yuan, W., G. Condorelli, M. Caruso, A. Felsani, and J. Giordano 1996. Human p300 protein is a coactivator for the transcription factor MyoD. J. Biol. Chem. 271:9009–9013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.