9
Views
31
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Analysis of TFIIA Function In Vivo: Evidence for a Role in TATA-Binding Protein Recruitment and Gene-Specific Activation

, , , &
Pages 8673-8685 | Received 11 Jun 1999, Accepted 07 Sep 1999, Published online: 28 Mar 2023

REFERENCES

  • Arndt, K. M. Unpublished data.
  • Arndt, K. M., S. L. Ricupero, D. M. Eisenmann, and J. Winston 1992. Biochemical and genetic characterization of a yeast TFIID mutant that alters transcription in vivo and DNA binding in vitro. Mol. Cell. Biol. 12:2372–2382.
  • Arndt, K. M., S. Ricupero-Hovasse, and J. Winston 1995. TBP mutants defective in activated transcription in vivo. EMBO J. 14:1490–1497.
  • Auble, D. T., and J. Hahn 1993. An ATP-dependent inhibitor of TBP binding to DNA. Genes Dev. 7:844–856.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl, ed. 1988. Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York, N.Y.
  • Bachmair, A., D. Finley, and J. Varshavsky 1986. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–186.
  • Chasman, D., and R. Kornberg. Personal communication.
  • Chatterjee, S., and J. Struhl 1995. Connecting a promoter-bound protein to TBP bypasses the need for a transcriptional activation domain. Nature 374:820–822.
  • Chi, T., and J. Carey 1996. Assembly of the isomerized TFIIA-TFIID-TATA ternary complex is necessary and sufficient for gene activation. Genes Dev. 10:2540–2550.
  • Christianson, T. W., R. S. Sikorski, M. Dante, J. H. Shero, and J. Hieter 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122.
  • Cormack, B. P., and J. Struhl 1992. The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell 69:685–696.
  • DeJong, J., R. Bernstein, and J. Roeder 1995. Human general transcription factor TFIIA: characterization of a cDNA encoding the small subunit and requirement for basal and activated transcription. Proc. Natl. Acad. Sci. USA 92:3313–3317.
  • Eisenmann, D. M., K. M. Arndt, S. L. Ricupero, J. W. Rooney, and J. Winston 1992. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes Dev. 6:1319–1331.
  • Ge, H., and J. Roeder 1994. The high mobility group protein HMG1 can reversibly inhibit class II gene transcription by interaction with the TATA-binding protein. J. Biol. Chem. 269:17136–17140.
  • Geiger, J. H. Personal communication.
  • Geiger, J. H., S. Hahn, S. Lee, and J. Sigler 1996. Crystal structure of the yeast TFIIA/TBP/DNA complex. Science 272:830–836.
  • Grant, P. A., L. Duggan, J. Cote, S. M. Roberts, J. E. Brownell, R. Candau, R. Ohba, T. Owen-Hughes, C. D. Allis, F. Winston, S. L. Berger, and J. Workman 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11:1640–1650.
  • Griggs, D. W., and J. Johnston 1991. Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc. Natl. Acad. Sci. USA 88:8597–8601.
  • Hall, M. N., L. Hereford, and J. Herskowitz 1984. Targeting of E. coli β-galactosidase to the nucleus in yeast. Cell 36:1057–1065.
  • Hampsey, M. 1998. Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol. Mol. Biol. Rev. 62:465–503.
  • Hartwell, L. H. 1976. Sequential function of gene products relative to DNA synthesis in the yeast cell cycle. J. Mol. Biol. 104:803–817.
  • Hirsch, J. P., and J. Henry 1986. Expression of the Saccharomyces cerevisiae inositol-1-phosphate synthase (INO1) gene is regulated by factors that affect phospholipid synthesis. Mol. Cell. Biol. 6:3320–3328.
  • Hoffman, C. S., and J. Winston 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272.
  • Holstege, F. C. P., E. G. Jennings, J. J. Wyrick, T. I. Lee, C. J. Hengartner, M. R. Green, T. R. Golub, E. S. Lander, and J. Young 1998. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95:717–728.
  • Imbalzano, A. N., K. S. Zaret, and J. Kingston 1994. Transcription factor (TF) IIB and TFIIA can independently increase the affinity of the TATA-binding protein for DNA. J. Biol. Chem. 269:8280–8286.
  • Inostroza, J. A., F. H. Mermelstein, I. Ha, W. S. Lane, and J. Reinberg 1992. Dr1, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell 70:477–489.
  • Kaiser, K., G. Stelzer, and J. Meisterernst 1995. The coactivator p15(PC4) initiates transcriptional activation during TFIIA-TFIID-promoter complex formation. EMBO J. 14:3520–3527.
  • Kang, J. J., D. T. Auble, J. A. Ranish, and J. Hahn 1995. Analysis of the yeast transcription factor TFIIA: distinct functional regions and a polymerase II-specific role in basal and activated transcription. Mol. Cell. Biol. 15:1234–1243.
  • Kim, J. L., D. B. Nikolov, and J. Burley 1993. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365:520–527.
  • Kim, Y., J. H. Geiger, S. Hahn, and J. Sigler 1993. Crystal structure of a yeast TBP/TATA-box complex. Nature 365:512–520.
  • Klages, N., and J. Strubin 1995. Stimulation of RNA polymerase II transcription initiation by recruitment of TBP in vivo. Nature 374:822–823.
  • Klein, C., and J. Struhl 1994. Increased recruitment of TATA-binding protein to the promoter by transcriptional activation domains in vivo. Science 266:280–282.
  • Kobayashi, N., T. G. Boyer, and J. Berk 1995. A class of activation domains interacts directly with TFIIA and stimulates TFIIA-TFIID-promoter complex assembly. Mol. Cell. Biol. 15:6465–6473.
  • Kokubo, T., M. J. Swanson, J. I. Nishikawa, A. G. Hinnebusch, and J. Nakatani 1998. The yeast TAF145 inhibitory domain and TFIIA competitively bind to TATA-binding protein. Mol. Cell. Biol. 18:1003–1012.
  • Lee, D., and J. Lis 1998. Transcriptional activation independent of TFIIH kinase and the RNA polymerase II mediator in vivo. Nature 393:389–392.
  • Lee, D. K., J. DeJong, S. Hashimoto, M. Horikoshi, and J. Roeder 1992. TFIIA induces conformational changes in TFIID via interactions with the basic repeat. Mol. Cell. Biol. 12:5189–5196.
  • Lee, M., and J. Struhl 1995. Mutations on the DNA-binding surface of TBP can specifically impair the response to acidic activators in vivo. Mol. Cell. Biol. 15:5461–5469.
  • Lieberman, P. M., and J. Berk 1994. A mechanism for TAFs in transcriptional activation: activation domain enhancement of TFIID-TFIIA-promoter DNA complex formation. Genes Dev. 8:995–1006.
  • Liu, Q., and K. M. Arndt. Unpublished data.
  • Ma, D., I. Olave, A. Merino, and J. Reinberg 1996. Separation of the transcriptional coactivator and antirepression functions of transcription factor IIA. Proc. Natl. Acad. Sci. USA 93:6583–6588.
  • Ma, D., H. Watanabe, F. Mermelstein, A. Admon, K. Oguri, X. Sun, T. Wada, T. Imai, T. Shiroya, D. Reinberg, and J. Handa 1993. Isolation of a cDNA encoding the largest subunit of TFIIA reveals functions important for activated transcription. Genes Dev. 7:2246–2257.
  • Madison, J. M., and J. Winston 1997. Evidence that Spt3 functionally interacts with Mot1, TFIIA, and TATA-binding protein to confer promoter-specific transcriptional control in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:287–295.
  • McClary, J. A., F. Witney, and J. Geisselsoder 1989. Efficient site-directed in vitro mutagenesis using phagemid vectors. BioTechniques 7:282–289.
  • McNeil, J. B., H. Agah, and J. Bentley 1998. Activated transcription independent of the RNA polymerase II holoenzyme in budding yeast. Genes Dev. 12:2510–2521.
  • Meisterernst, M., and J. Roeder 1991. Family of proteins that interact with TFIID and regulate promoter activity. Cell 67:557–567.
  • Muhlrad, D., R. Hunter, and J. Parker 1992. A rapid method for localized mutagenesis of yeast genes. Yeast 8:79–82.
  • Orphanides, G., T. Lagrange, and J. Reinberg 1996. The general transcription factors of RNA polymerase II. Genes Dev. 10:2657–2683.
  • Ozer, J., A. H. Bolden, and J. Lieberman 1996. Transcription factor IIA mutations show activator-specific defects and reveal a IIA function distinct from stimulation of TBP-DNA binding. J. Biol. Chem. 271:11182–11190.
  • Ozer, J., L. E. Lezina, J. Ewing, S. Audi, and J. Lieberman 1998. Association of transcription factor IIA with TATA binding protein is required for transcriptional activation of a subset of promoters and cell cycle progression in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:2559–2570.
  • Ozer, J., K. Mitsouras, D. Zerby, M. Carey, and J. Lieberman 1998. Transcription factor IIA derepresses TATA-binding protein (TBP)-associated factor inhibition of TBP-DNA binding. J. Biol. Chem. 273:14293–14300.
  • Ozer, J., P. A. Moore, A. H. Bolden, A. Lee, C. A. Rosen, and J. Lieberman 1994. Molecular cloning of the small (γ) subunit of human TFIIA reveals functions critical for activated transcription. Genes Dev. 8:2324–2335.
  • Petri, V., M. Hsieh, and J. Brenowitz 1995. Thermodynamic and kinetic characterization of the binding of the TATA binding protein to the adenovirus E4 promoter. Biochemistry 34:9977–9984.
  • Pinto, I., D. E. Ware, and J. Hampsey 1992. The yeast SUA7 gene encodes a homolog of human transcription factor TFIIB and is required for normal start site selection in vivo. Cell 68:977–988.
  • Ptashne, M., and J. Gann 1997. Transcriptional activation by recruitment. Nature 386:569–577.
  • Ranish, J. A., W. S. Lane, and J. Hahn 1992. Isolation of two genes that encode subunits of the yeast transcription factor IIA. Science 255:1127–1129.
  • Ranish, J. A., N. Yudkovsky, and J. Hahn 1999. Intermediates in formation and activity of the RNA polymerase II preinitiation complex: holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB. Genes Dev. 13:49–63.
  • Reddy, P., and J. Hahn 1991. Dominant negative mutations in yeast TFIID define a bipartite DNA-binding region. Cell 65:349–357.
  • Rose, M. D., F. Winston, P. Hieter 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sayre, M. H., H. Tschochner, and J. Kornberg 1992. Reconstitution of transcription with five purified initiation factors and RNA polymerase II from Saccharomyces cerevisiae. J. Biol. Chem. 267:23376–23382.
  • Shirra, M. K., and J. Arndt 1999. Evidence for the involvement of the Glc7-Reg1 phosphatase and the Snf1-Snf4 kinase in the regulation of INO1 transcription in Saccharomyces cerevisiae. Genetics 152:73–87.
  • Shykind, B. M., J. Kim, and J. Sharp 1995. Activation of the TFIID-TFIIA complex with HMG-2. Genes Dev. 9:1354–1365.
  • Shykind, B. M., J. Kim, L. Stewart, J. J. Champoux, and J. Sharp 1997. Topoisomerase I enhances TFIID-TFIIA complex assembly during activation of transcription. Genes Dev. 11:397–407.
  • Sikorski, R. S., and J. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Solow, S. P., L. Lezina, and J. Lieberman 1999. Phosphorylation of TFIIA stimulates TATA binding protein-TATA interaction and contributes to maximal transcription and viability in yeast. Mol. Cell. Biol. 19:2846–2852.
  • Stargell, L. A., and J. Struhl 1996. Mechanisms of transcriptional activation in vivo: two steps forward. Trends Genet. 12:311–315.
  • Stargell, L. A., and J. Struhl 1995. The TBP-TFIIA interaction in the response to acidic activators in vivo. Science 269:75–78.
  • St. John, T. P., and J. Davis 1981. The organization and transcription of the galactose gene cluster of Saccharomyces. J. Mol. Biol. 152:285–315.
  • Stolinski, L. A., D. M. Eisenmann, and J. Arndt 1997. Identification of RTF1, a novel gene important for TATA site selection by TATA box-binding protein in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:4490–4500.
  • Sun, X., D. Ma, M. Sheldon, K. Yeung, and J. Reinberg 1994. Reconstitution of human TFIIA activity from recombinant polypeptides: a role in TFIID-mediated transcription. Genes Dev. 8:2336–2348.
  • Tan, S., Y. Hunziker, D. F. Sargent, and J. Richmond 1996. Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature 381:127–134.
  • Wang, W., J. D. Gralla, and J. Carey 1992. The acidic activator GAL4-AH can stimulate polymerase II transcription by promoting assembly of a closed complex requiring TFIID and TFIIA. Genes Dev. 6:1716–1727.
  • Weideman, C. A., R. C. Netter, L. R. Benjamin, J. J. McAllister, L. A. Schmiedekamp, R. A. Coleman, and J. Pugh 1997. Dynamic interplay of TFIIA, TBP and TATA DNA. J. Mol. Biol. 271:61–75.
  • Winston, F., C. Dollard, and J. Ricupero-Hovasse 1995. Construction of a set of convenient S. cerevisiae strains that are isogenic to S288C. Yeast 11:53–55.
  • Winston, F., K. J. Durbin, and J. Fink 1984. The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell 39:675–682.
  • Xiao, H., J. D. Friesen, and J. Lis 1995. Recruiting TATA-binding protein to a promoter: transcriptional activation without an upstream activator. Mol. Cell. Biol. 15:5757–5761.
  • Yokomori, K., A. Admon, J. A. Goodrich, J. Chen, and J. Tjian 1993. Drosophila TFIIA-L is processed into two subunits that are associated with the TBP/TAF complex. Genes Dev. 7:2235–2245.
  • Yokomori, K., M. P. Zeidler, J. Chen, C. P. Verrijzer, M. Mlodzik, and J. Tjian 1994. Drosophila TFIIA directs cooperative DNA binding with TBP and mediates transcriptional activation. Genes Dev. 8:2313–2323.
  • Zhou, Y., X. Zhang, and J. Ebright 1991. Random mutagenesis of gene-sized DNA molecules by use of PCR with Taq DNA polymerase. Nucleic Acids Res. 19:6052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.