39
Views
135
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

A Complex Containing RNA Polymerase II, Paf1p, Cdc73p, Hpr1p, and Ccr4p Plays a Role in Protein Kinase C Signaling

, , , , &
Pages 1056-1067 | Received 19 Aug 1998, Accepted 27 Oct 1998, Published online: 28 Mar 2023

REFERENCES

  • Aguilera, A., and J. Klein 1988. Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119:779–790.
  • Aguilera, A., and J. Klein 1990. HPR1, a novel yeast gene that prevents intrachromosomal excision recombination shows carboxy-terminal homology to the Saccharomyces cerevisiae TOP1 gene. Mol. Cell. Biol. 10:1439–1451.
  • Archambault, J., F. Lacroute, A. Ruet, and J. Friesen 1992. Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II. Mol. Cell. Biol. 12:4142–4152.
  • Botstein, D., S. C. Falco, S. E. Stewart, M. Brennan, S. Scherer, D. T. Stinchcomb, K. Struhl, and J. Davis 1979. Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene 8:17–24.
  • Buehrer, B. M., and J. Errede 1997. Coordination of the mating and cell integrity mitogen-activated protein kinase pathways in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:6517–6525.
  • Chang, M., and J. Jaehning 1997. A multiplicity of mediators: alternative forms of transcription complexes communicated with transcriptional regulators. Nucleic Acids Res. 25:4861–4865.
  • Chavez, S., and J. Aguilera 1997. The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome stability. Genes Dev. 11:3459–3470.
  • Cid, V. J., A. Duran, F. Del Rey, M. P. Snyder, C. Nombela, and J. Sanchez 1995. Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol. Rev. 59:345–386.
  • Costigan, C., D. Kolodrubetz, and J. Snyder 1994. NPH6A and NHP6B, which encode HMG1-like proteins, are candidates for downstream components of the yeast SLT2 mitogen-activated protein kinase pathway. Mol. Cell. Biol. 14:2391–2403.
  • Denis, C. L. 1984. Identification of new genes involved in the regulation of yeast alcohol dehydrogenase II. Genetics 108:833–844.
  • Denis, C. L., and J. Malvar 1990. The CCR4 gene from Saccharomyces cerevisiae is required for both nonfermentative and spt-mediated gene expression. Genetics 124:283–291.
  • Dodou, E., and J. Treisman 1997. The Saccharomyces cerevisiae MADS-box transcription factor Rlm1 is a target for the Mpk1 mitogen-activated protein kinase pathway. Mol. Cell. Biol. 17:1848–1859.
  • Elder, R. T., E. Y. Loh, and J. Davis 1983. RNA from the yeast transposable element Ty1 has both ends in the direct repeats, a structure similar to retrovirus RNA. Proc. Natl. Acad. Sci. USA 80:2432–2436.
  • Fan, H.-Y., and J. Klein 1994. Characterization of mutations that suppress the temperature-sensitive growth of the hpr1Δ mutant of Saccharomyces cerevisiae. Genetics 137:945–956.
  • Fan, H.-Y., and H. L. Klein. Submitted for publication.
  • Fan, H.-Y., K. K. Chang, and J. Klein 1996. Mutations in the RNA polymerase II transcription machinery suppress the hyperrecombination mutant hpr1D of Saccharomyces cerevisiae. Genetics 142:749–759.
  • Goodrich, J. A., and J. Tjian 1994. TBP-TAF complexes: selectivity factors for eukaryotic transcription. Curr. Biol. 6:403–409.
  • Gray, J. V., J. P. Ogas, Y. Kamada, M. Stone, D. E. Levin, and J. Herskowitz 1997. A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO J. 16:4924–4937.
  • Guthrie, C., and J. Fink 1994. Guide to yeast genetics and molecular biology. Methods Enzymol. 194:3–37.
  • Harlow, E., D. Lane 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hata, H., H. Mitsui, H. Liu, Y. Bai, C. L. Denis, Y. Shimazu, and J. Sakai 1998. Dhh1p, a putative RNA helicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae. Genetics 148:571–579.
  • Huang, K. N., and J. Symington 1995. Suppressors of a Saccharomyces cerevisiae pkc1 mutation identify alleles of the phosphatase PTC1 and of a novel gene encoding a putative basic leucine zipper protein. Genetics 141:1275–1285.
  • Huang, K. N., and J. Symington 1994. Mutation of the gene encoding protein kinase C1 stimulates mitotic recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:6039–6045.
  • Hunter, T., and J. Plowman 1997. The protein kinases of budding yeast: six score and more. Trends Biochem. Sci. 22:18–22.
  • Igual, J. C., A. L. Johnson, and J. Johnston 1996. Coordinated regulation of gene expression by the cell cycle transcription factor SWI4 and the protein kinase C MAP kinase pathway for yeast cell integrity. EMBO J. 15:5001–5013.
  • Jiang, Y. W., and J. Stillman 1992. Involvement of SIN4 global transcriptional regulator in the chromatin structure of Saccharomyces cerevisiae. Mol. Cell. Biol. 12:4503–4514.
  • Kamada, Y., U. S. Jung, J. Piotrowski, and J. Levin 1995. The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev. 9:1559–1571.
  • Keleher, C. A., M. J. Redd, J. Schultz, M. Carlson, and J. Johnson 1992. Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68:709–719.
  • Koleske, A. J., and J. Young 1994. An RNA polymerase II holoenzyme responsive to activators. Nature 368:466–469.
  • Koleske, A. J., and J. Young 1995. The RNA polymerase II holoenzyme and its implications for gene regulation. Trends Biochem. Sci. 3:113–116.
  • Lea, D. E., and J. Coulson 1948. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49:264–284.
  • Levin, D. E., and J. Bartlett-Heubusch 1992. Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J. Cell Biol. 116:1221–1229.
  • Levin, D. E., and J. Errede 1995. The proliferation of MAP kinase signaling pathways in yeast. Curr. Biol. 7:197–202.
  • Levin, D. E., F. O. Fields, R. Kunisawa, J. M. Bishop, and J. Thorner 1990. A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Cell 62:213–224.
  • Li, Y., S. Bjorkland, Y. W. Jiang, Y.-K. Kim, W. S. Lane, D. J. Stillman, and J. Kornberg 1995. Yeast global transcriptional regulators Sin4 and Rgr1 are components of mediator complex/RNA polymerase II holoenzyme. Proc. Natl. Acad. Sci. USA 92:10864–10868.
  • Liang, P., and J. Pardee 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971.
  • Liu, H.-Y., J. H. Toyn, Y.-C. Chiang, M. P. Draper, L. H. Johnston, and J. Denis 1997. DBF2, a cell cycle-regulated protein kinase, is physically and functionally associated with the CCR4 transcriptional regulatory complex. EMBO J. 16:5289–5298.
  • Liu, H. Y., V. Badarinarayana, D. C. Audino, J. Rappsilber, M. Mann, and J. Denis 1998. The NOT proteins are part of the CCR4 transcriptional complex and affect gene expression both positively and negatively. EMBO J. 17:1096–1106.
  • Lussier, M., A. White, J. Sheratin, T. di Paolo, J. Treadwell, S. Southard, C. Horenstein, J. Shen-Weiner, A. Ram, J. Kapteyn, T. Roemer, D. Vo, D. Bondoc, J. Hall, W. Zhong, A. Sdicu, J. Davies, F. Klis, P. Robbins, and J. Bussey 1997. Large-scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 147:435–450.
  • Madden, K., Y.-J. Sheu, K. Baetz, B. Andrews, and J. Snyder 1997. SBF cell cycle regulator as a target of the yeast PKC-MAP kinase pathway. Science 275:1781–1784.
  • Madhani, H. D., C. A. Styles, and J. Fink 1997. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91:673–684.
  • Malvar, T., R. W. Biron, D. B. Kaback, and J. Denis 1992. The Ccr4 protein from Saccharomyces cerevisiae contains a leucine-rich repeat region which is required for its control of ADH2 expression. Genetics 132:951–962.
  • Martin, H., M. C. Castellanos, R. Cenamor, M. Sanchez, M. Molina, and J. Nombela 1996. Molecular and functional characterization of a mutant allele of the mitogen-activated protein kinase gene SLT2 (MPK1). Curr. Genet. 29:516–522.
  • Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
  • Nonaka, H., K. Tanaka, H. Hirano, T. Fujiwara, H. Kohno, M. Umikawa, A. Mino, and J. Takai 1995. A downstream target of RHO1 small GTP-binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. EMBO J. 14:5931–5938.
  • Orphanides, G., T. Lagrange, and J. Reinberg 1996. The general transcription factors of RNA polymerase II. Genes Dev. 10:2657–2683.
  • Paravicini, G., M. Cooper, L. Freidli, D. J. Smith, J.-L. Carpentier, L. S. Klig, and J. Payton 1992. The osmotic integrity of the yeast cell requires a functional PKC1 gene product. Mol. Cell. Biol. 12:4896–4905.
  • Ram, A. F. J., A. Wolters, R. denHoopen, and J. Klis 1994. A new approach for isolating cell wall mutants of Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast 10:1019–1030.
  • Roeder, R. G. 1996. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21:327–334.
  • Sambrook, J., E. F. Fritsch, T. Maniatis 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Shi, X., M. Chang, A. J. Wolf, C.-H. Chang, A. A. Frazer-Abel, P. A. Wade, Z. F. Burton, and J. Jaehning 1997. Cdc73p and Paf1p are found in a novel RNA polymerase II-containing complex distinct from the Srbp-containing holoenzyme. Mol. Cell. Biol. 17:1160–1169.
  • Shi, X., A. Finkelstein, A. J. Wolf, P. A. Wade, Z. F. Burton, and J. Jaehning 1996. Paf1p, an RNA polymerase II-associated factor in Saccharomyces cerevisiae, may have both positive and negative roles in transcription. Mol. Cell. Biol. 16:669–676.
  • Struhl, K., D. T. Stinchcomb, S. Scherer, and J. Davis 1979. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci. USA 76:1035–1039.
  • Tansey, W. P., and J. Herr 1997. TAFs: guilt by association? Cell 88:729–732.
  • Thompson, C. M., and J. Young 1995. General requirement for RNA polymerase II holoenzymes in vivo. Proc. Natl. Acad. Sci. USA 92:4587–4590.
  • Ulery, T. L., and J. Jaehning 1994. MTF1, encoding the yeast mitochondrial RNA polymerase specificity factor, is located on chromosome XIII. Yeast 10:839–841.
  • Wade, P. A., S. D. Shaffer, and J. Jaehning 1993. Resolution of transcription factors from a transcriptionally active whole-cell extract from yeast: purification of TFIIB, TBP and RNA polymerase IIa. Pro. Exp. Pur. 4:290–297.
  • Wade, P. A., W. Werel, R. C. Fentzke, N. E. Thompson, J. F. Leykam, R. R. Burgess, J. A. Jaehning, and J. Burton 1996. A Novel Collection of Accessory Factors Associated with Yeast RNA Polymerase II. Protein Expr. Purif. 8:85–90.
  • Watanabe, Y., K. Irie, and J. Matsumoto 1995. Yeast RLM1 encodes a serum response-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol. Cell. Biol. 15:5740–5749.
  • Watanabe, Y., G. Takaesu, M. Hafiwara, K. Irie, and J. Matsumoto 1997. Characterization of a serum response factor-like protein in Saccharomyces cerevisiae, Rlm1, which has transcriptional activity regulated by the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol. Cell. Biol. 17:2615–2623.
  • Woontner, M., P. A. Wade, J. Bonner, and J. Jaehning 1991. Transcriptional activation in an improved whole-cell extract from Saccharomyces cerevisiae. Mol. Cell. Biol. 11:4555–4560.
  • Zarzov, P., C. Mazzoni, and J. Mann 1996. The SLT2 (MPK1) MAP kinase is activated during periods of polarized cell growth. EMBO J. 15:83–91.
  • Zhu, Y., C. L. Peterson, and J. Christman 1995. HRP1 encodes a global positive regulator of transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:1698–1708.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.