89
Views
561
CrossRef citations to date
0
Altmetric
Cell Growth and Development

p53 Sites Acetylated In Vitro by PCAF and p300 Are Acetylated In Vivo in Response to DNA Damage

, , , , , & show all
Pages 1202-1209 | Received 18 Aug 1998, Accepted 04 Nov 1998, Published online: 28 Mar 2023

REFERENCES

  • Anderson, C. Personal communication.
  • Arany, Z., W. R. Sellers, D. M. Livingston, and J. Eckner 1994. E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell 77:799–800.
  • Arias, J., A. S. Alberts, P. Brindle, F. X. Claret, T. Smeal, M. Karin, J. Feramisco, and J. Montminy 1994. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370:226–229.
  • Avantaggiati, M. L., V. Ogryzko, K. Gardner, A. Giordano, A. S. Levine, and J. Kelly 1997. Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89:1175–1184.
  • Bannister, A., and J. Kouzarides 1996. The CBP co-activator is a histone acetyltransferase. Nature 384:641–643.
  • Bannister, A. J., and J. Kouzarides 1995. CBP-induced stimulation of c-Fos activity is abrogated by E1A. EMBO J. 14:4758–4762.
  • Barak, Y., T. Juven, R. Haffner, and J. Oren 1993. Mdm2 expression is induced by wild type p53 activity. EMBO J. 12:461–468.
  • Bargonetti, J., J. J. Manfredi, X. Chen, D. R. Marshak, and J. Prives 1993. A proteolytic fragment from the central region of p53 has marked sequence-specific DNA-binding activity when generated from wild-type but not from oncogenic mutant p53 protein. Genes Dev. 7:2565–2574.
  • Barlev, N., R. Candau, L. Wang, P. Darpino, N. Silverman, and J. Berger 1995. Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein. J. Biol. Chem. 270:19337–19344.
  • Bhattacharya, S., R. Eckner, S. Grossman, E. Oldread, Z. Arany, A. D’Andrea, and J. Livingston 1996. Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha. Nature 383:344–347.
  • Brownell, J., J. Zhou, T. Ranalli, R. Kobayashi, D. Edmondson, S. Roth, and J. Allis 1996. Tetrahymena histone acetyltransferase A: a transcriptional co-activator linking gene expression to histone acetylation. Cell 84:843–851.
  • Buckbinder, L., R. Talbott, S. Velasco-Miguel, I. Takenaka, B. Faha, B. R. Seizinger, and J. Kley 1995. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377:646–649.
  • Candau, R., D. M. Scolnick, P. Darpino, C. Y. Ying, T. Halazonetis, and J. Berger 1997. Two tandem and independent sub-activation domains in the amino terminus of p53 require the adaptor complex for activity. Oncogene 15:807–816.
  • Candau, R., J. Zhou, C. D. Allis, and J. Berger 1997. Histone acetyltransferase activity and interaction with ADA2 are critical for GCN5 function in vivo. EMBO J. 16:555–565.
  • Clore, G. M., J. G. Omichinski, K. Sakaguchi, N. Zambrano, H. Sakamoto, E. Appella, and J. Gronenborn 1994. High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science 265:386–391.
  • Dai, P., H. Akimaru, Y. Tanaka, D. Hou, T. Yasukawa, C. Kanei-Ishii, T. Takahashi, and J. Ishii 1996. CBP as a transcriptional coactivator of c-Myb. Genes Dev. 10:528–540.
  • el Deiry, W., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and J. Vogelstein 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.
  • Fields, S., and J. Jang 1990. Presence of a potent transcription activating sequence in the p53 protein. Science 249:1046–1049.
  • Fiscella, M., S. J. Ullrich, N. Zambrano, M. T. Shields, D. Lin, S. P. Lees-Miller, C. W. Anderson, W. E. Mercer, and J. Appella 1993. Mutation of the serine 15 phosphorylation site of human p53 reduces the ability of p53 to inhibit cell cycle progression. Oncogene 8:1519–1528.
  • Fiscella, M., N. Zambrano, S. J. Ullrich, T. Unger, D. Lin, B. Cho, W. E. Mercer, C. W. Anderson, and J. Appella 1994. The carboxy-terminal serine 392 phosphorylation site of human p53 is not required for wild-type activities. Oncogene 9:3249–3257.
  • Funk, W. D., D. T. Pak, R. H. Karas, W. E. Wright, and J. Shay 1992. A transcriptionally active DNA-binding site for human p53 protein complexes. Mol. Cell. Biol. 12:2866–2871.
  • Gottlieb, T., and J. Oren 1996. p53 in growth control and neoplasia. Biochim. Biophys. Acta 1287:77–102.
  • Gu, W., and J. Roeder 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606.
  • Gu, W., X. L. Shi, and J. Roeder 1997. Synergistic activation of transcription by CBP and p53. Nature 387:819–823.
  • Halazonetis, T. D., L. J. Davis, and J. Kandil 1993. Wild-type p53 adopts a ’mutant’-like conformation when bound to DNA. EMBO J. 12:1021–1028.
  • Halazonetis, T. D., and J. Kandil 1993. Conformational shifts propagate from the oligomerization domain of p53 to its tetrameric DNA binding domain and restore DNA binding to select p53 mutants. EMBO J. 12:5057–5064.
  • Hupp, T., D. Meek, C. Midgley, and J. Lane 1992. Regulation of the specific DNA binding function of p53. Cell 71:875–886.
  • Imhof, A., X. Yang, V. Ogryzko, Y. Nakatani, A. Wolffe, and J. Ge 1997. Acetylation of general transcription factors by histone acetyltransferases. Curr. Biol. 7:689–692.
  • Jeffrey, P. D., S. Gorina, and J. Pavletich 1995. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267:1498–1502.
  • Kapoor, M., and J. Lozano 1998. Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proc. Natl. Acad. Sci. USA 95:2834–2837.
  • Kastan, M. B., Q. Zhan, W. el Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, and J. Fornace 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597.
  • Ko, L. J., and J. Prives 1996. p53: puzzle and paradigm. Genes Dev. 10:1054–1072.
  • Korzus, E., J. Torchia, D. Rose, L. Xu, R. Kurokawa, E. McInerney, T. Mullen, C. Glass, and J. Rosenfeld 1998. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279:703–707.
  • Kuo, M.-H., J. E. Brownell, T. A. Ranalli, R. G. Cook, D. G. Edmonson, S. Y. Roth, and J. Allis 1996. Transcription-linked acetylation by Gen5p of histones H3 and H4 at specific lysines. Nature 383:269–272.
  • Kwok, R. P., J. R. Lundblad, J. C. Chrivia, J. P. Richards, H. P. Bachinger, R. G. Brennan, S. G. Roberts, M. R. Green, and J. Goodman 1994. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370:223–226.
  • Lee, W., T. S. Harvey, Y. Yin, P. Yau, D. Litchfield, and J. Arrowsmith 1994. Solution structure of the tetrameric minimum transforming domain of p53. Nat. Struct. Biol. 1:877–890.
  • Levine, A. J. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331.
  • Lill, N. L., S. R. Grossman, D. Ginsberg, J. DeCaprio, and J. Livingston 1997. Binding and modulation of p53 by p300/CBP coactivators. Nature 387:823–827.
  • Luger, K., A. Mader, R. Richmond, D. Sargent, and J. Richmond 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260.
  • Lundblad, J., R. Kwok, M. Laurance, M. Harter, and J. Goodman 1995. Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional coactivator CBP. Nature 374:85–88.
  • Maltzman, W., and J. Czyzyk 1984. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol. Cell. Biol. 4:1689–1694.
  • Miyashita, T., and J. Reed 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299.
  • Mizzen, C., and J. Allis 1998. Linking histone acetylation to transcriptional regulation. Cell. Mol. Life Sci. 54:6–20.
  • Muller-Tiemann, B., T. Halazonetis, and J. Elting 1998. Identification of an additional negative regulatory region for p53 sequence-specific DNA binding. Proc. Natl. Acad. Sci. USA 95:6079–6084.
  • Oelgeschlager, M., R. Janknecht, J. Krieg, S. Schreek, and J. Luscher 1996. Interaction of the co-activator CBP with Myb proteins: effects on Myb-specific transactivation and on the cooperativity with NF-M. EMBO J. 15:2771–2780.
  • Ogryzko, V., T. Kotani, X. Zhang, R. Schlitz, T. Howard, X. Yang, B. Howard, J. Qin, and J. Nakatani 1998. Histone-like TAFs within the PCAF histone acetylase complex. Cell 94:35–44.
  • Ogryzko, V., R. Schlitz, V. Russanova, B. Howard, and J. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959.
  • Okamoto, K., and J. Beach 1994. Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J. 13:4816–4822.
  • Pietenpol, J. A., T. Tokino, S. Thiagalingam, W. el Deiry, K. W. Kinzler, and J. Vogelstein 1994. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl. Acad. Sci. USA 91:1998–2002.
  • Puri, P. L., V. Sartorelli, X. J. Yang, Y. Hamamori, V. V. Ogryzko, B. H. Howard, L. Kedes, J. Y. Wang, A. Graessmann, Y. Nakatani, and J. Levrero 1997. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol. Cell. 1:35–45.
  • Raycroft, L., H. Y. Wu, and J. Lozano 1990. Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249:1049–1051.
  • Sakamoto, H., M. S. Lewis, H. Kodama, E. Apella, and J. Sakaguchi 1994. Specific sequences from the carboxyl terminus of human p53 gene product form anti-parallel tetramers in solution. Proc. Natl. Acad. Sci. USA 91:8974–8978.
  • Scharer, E., and J. Iggo 1992. Mammalian p53 can function as a transcription factor in yeast. Nucleic Acids Res. 20:1539–1545.
  • Scolnick, D., N. Chehab, E. Stavridi, M. Lien, L. Caruso, E. Moran, S. Berger, and J. Halazonetis 1997. CREB-binding protein and p300/CBP-associated factor are transcriptional coactivators of the p53 tumor suppressor protein. Cancer Res. 57:3693–3696.
  • Scolnick, D. M., and L. Liu. Unpublished data.
  • Shieh, S. Y., M. Ikeda, Y. Taya, and J. Prives 1997. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334.
  • Struhl, K. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12:599–606.
  • Sturzbecher, H. W., R. Brain, C. Addison, K. Rudge, M. Remm, M. Grimaldi, E. Keenan, and J. Jenkins 1992. A C-terminal α-helix plus basic region motif is the major structural determinant of p53 tetramerization. Oncogene 7:1513–1523.
  • Wang, Y., and J. Prives 1995. Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 376:88–91.
  • Wang, Y., M. Reed, P. Wang, J. E. Stenger, G. Mayr, M. E. Anderson, J. F. Schwedes, and J. Tegtmeyer 1993. p53 domains: identification and characterization of two autonomous DNA-binding regions. Genes Dev. 7:2575–2586.
  • Waterman, J., J. Shenk, and J. Halazonetis 1995. The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding. EMBO J. 14:512–519.
  • Waterman, M., J. Waterman, and J. Halazonetis 1996. An engineered four-stranded coiled coil substitutes for the tetramerization domain of wild type p53 and alleviates transdominant inhibition by tumor-derived p53 mutants. Cancer Res. 56:158–163.
  • Wu, X., J. H. Bayle, D. Olson, and J. Levine 1993. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7:1126–1132.
  • Yang, X., V. Ogryzko, J. Nishikawa, B. Howard, and J. Nakatani 1996. A p300/CBP-associated factor that competes with the adenoviral E1A oncoprotein. Nature 382:319–324.
  • Yuan, W., G. Condorelli, M. Caruso, A. Felsani, and J. Giordano 1996. Human p300 protein is a coactivator for the transcription factor MyoD. J. Biol. Chem. 271:9003–9013.
  • Zhang, J., U. Vinkemeier, W. Gu, D. Chakravarti, C. Horvath, and J. Darnell 1996. Two contact regions between Stat1 and CBP/p300 in interferon gamma signaling. Proc. Natl. Acad. Sci. USA 93:15092–15096.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.