16
Views
135
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

p53-Mediated Repression of Alpha-Fetoprotein Gene Expression by Specific DNA Binding

, &
Pages 1279-1288 | Received 23 Apr 1998, Accepted 27 Oct 1998, Published online: 28 Mar 2023

REFERENCES

  • Agoff, S. N., J. Hou, D. I. H. Linzer, and J. Wu 1993. Regulation of the human hsp70 promoter by p53. Science 259:84–87.
  • Ang, S. L., A. Wierda, D. Wong, K. A. Stevens, S. Cascio, J. Rossant, and J. Zaret 1993. The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119:1301–1315.
  • Avantaggiati, M. L., V. Ogryzko, K. Gardner, A. Giordano, A. S. Levine, and J. Kelly 1997. Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89:1175–1184.
  • Barlow, C., S. Hirotsune, R. Paylor, M. Liyanage, M. Eckhaus, F. Collins, Y. Shiloh, J. N. Crawley, T. Ried, D. Tagle, and J. Wynshaw-Boris 1996. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86:159–171.
  • Barton, M. C., N. Madani, and J. Emerson 1997. Distal enhancer regulation by promoter derepression in topologically constrained DNA in vitro. Proc. Natl. Acad. Sci. USA 94:7257–7262.
  • Camper, S. A., R. Godbout, and J. Tilghman 1989. The developmental regulation of albumin and alpha-fetoprotein gene expression. Prog. Nucleic Acid Res. Mol. Biol. 36:131–143.
  • Camper, S. A., and J. Tilghman 1989. Postnatal repression of the alpha-fetoprotein gene is enhancer independent. Genes Dev. 3:537–546.
  • Camper, S. A., and J. Tilghman 1991. The activation and silencing of gene transcription in the liver. Bio/Technology 16:81–87.
  • Crowe, A. J., and J. Hayman 1993. Post-translational modifications of the env-sea oncogene product: the role of proteolytic processing in transformation. Oncogene 8:181–189.
  • de Oca Luna, R. M., D. S. Wagner, and J. Lozano 1995. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:206–208.
  • Dignam, J. D., R. M. Lebovitz, and J. Roeder 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Dobner, T., N. Horikoshi, S. Rubenwolf, and J. Shenk 1996. Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science 272:1470–1473.
  • Eckner, R., T. P. Yao, E. Oldread, and J. Livingston 1994. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 10:2478–2490.
  • Eizenberg, O., A. Faber-Elman, E. Gottlieb, M. Oren, V. Rotter, and J. Schwartz 1996. p53 plays a regulatory role in differentiation and apoptosis of central nervous system-associated cells. Mol. Cell. Biol. 16:5178–5185.
  • El-Deiry, W. S., S. E. Kern, J. A. Pietenpol, K. W. Kinzler, and J. Vogelstein 1992. Definition of a consensus binding site for p53. Nat. Gen. 1:45–49.
  • Emerson, B. M., J. M. Nickol, and J. Fong 1989. Erythroid-specific activation and derepression of the chick β-globin promoter in vitro. Cell 57:1189–1200.
  • Enoch, T., and J. Norbury 1995. Cellular responses to DNA damage: cell-cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biochem. Sci. 20:426–430.
  • Farmer, G., J. Bargonetti, H. Zhu, P. Friedman, R. Prywes, and J. Prives 1992. Wild-type p53 activates transcription in vitro. Nature 358:83–86.
  • Farmer, G., J. Colgan, Y. Nakatani, J. L. Manley, and J. Prives 1996. Functional interaction between p53, the TATA-binding protein (TBP), and TBP-associated factors in vivo. Mol. Cell. Biol. 16:4295–4304.
  • Farmer, G., P. Friedlander, J. Colgan, J. L. Manley, and J. Prives 1996. Transcriptional repression by p53 involves molecular interactions distinct from those with the TATA box binding protein. Nucleic Acids Res. 24:4281–4288.
  • Galarneau, L., J.-F. Pare, D. Allard, D. Hamel, L. Levesque, J. D. Tugwood, S. Green, and J. Belanger 1996. The alpha-fetoprotein locus is activated by a nuclear receptor of the Drosophila Ftz-F1 family. Mol. Cell. Biol. 16:3853–3865.
  • Gallagher, M. J., and J. Blumenthal 1992. Cloning and expression of wildtype and mutant forms of the cardiotonic polypeptide anthopleurin B. J. Biol. Chem. 267:13958–13963.
  • Godbout, R., R. Ingram, and J. Tilghman 1986. Multiple regulatory elements in the intergenic region between the alpha-fetoprotein and albumin genes. Mol. Cell. Biol. 6:477–487.
  • Godley, L. A., J. B. Kopp, M. Eckhaus, J. J. Paglino, J. Owens, and J. Varmus 1996. Wild-type p53 transgenic mice exhibit altered differentiation of the ureteric bud and possess small kidneys. Genes Dev. 10:836–850.
  • Gorski, K., M. Carneiro, and J. Schibler 1986. Tissue-specific in vitro transcription from the mouse albumin promoter. Cell 47:767–776.
  • Graeber, T. G., C. Osmanian, T. Jacks, D. E. Housman, D. J. Koch, S. W. Lowe, and J. Giaccia 1996. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91.
  • Graeber, T. G., J. F. Peterson, M. Tsai, K. Monica, A. J. Fornace Jr., and J. Giaccia 1994. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol. Cell. Biol. 14:6264–6277.
  • Graham, F. L., and J. van der Eb 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–464.
  • Gray, S., and J. Levine 1996. Transcriptional repression in development. Curr. Opin. Cell Biol. 8:358–364.
  • Gu, W., and J. Roeder 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606.
  • Gu, W., X.-L. Shi, and J. Roeder 1997. Synergistic activation of transcription by CBP and p53. Nature 387:819–823.
  • Haffner, R., and J. Oren 1995. Biochemical properties and biological effects of p53. Curr. Opin. Genet. Dev. 5:84–90.
  • Hainault, P., and J. Milner 1993. Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res. 53:4469–4473.
  • Hanna-Rose, W., and J. Hansen 1996. Active repression mechanisms of eukaryotic transcription repressors. Trends Genet. 12:229–234.
  • Hawley, R. S., and J. Friend 1996. Strange bedfellows in even stranger places: the role of ATM in meiotic cells, lymphocytes, tumors, and its functional links to 53. Genes Dev. 10:2383–2388.
  • Hinds, P., C. Finlay, and J. Levine 1989. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J. Virol. 63:739–746.
  • Horikoshi, N., K. Maguire, A. Kralli, E. Maldonado, D. Reinberg, and J. Weinmann 1991. Direct interaction between adenovirus E1A protein and the TATA box binding transcription factor IID. Proc. Natl. Acad. Sci. USA 88:5124–5128.
  • Hundley, J. E., S. K. Koester, D. A. Troyer, S. G. Hisenbeck, M. A. Subler, and J. Windle 1997. Increased tumor proliferation and genomic instability without decreased apoptosis in MMTV-ras mice deficient in p53. Mol. Cell. Biol. 17:723–731.
  • Hupp, T. R., D. W. Meek, C. A. Midgley, and J. Lane 1992. Regulation of the specific DNA binding function of p53. Cell 71:875–886.
  • Hupp, T. R., and J. Lane 1994. Allosteric activation of latent p53 tetramers. Curr. Biol. 4:865–875.
  • Ikeda, K., J.-P. Halle, G. Stelzer, M. Meisterernst, and J. Kawakami 1998. Involvement of negative cofactor NC2 in active repression by zinc finder-homeodomain transcription factor AREB6. Mol. Cell. Biol. 18:10–18.
  • Jackson, D. A., K. E. Rowader, K. Stevens, C. Jiang, P. Milos, and J. Zaret 1993. Modulation of liver-specific transcription by interactions between hepatocyte nuclear factor 3 and nuclear factor 1 binding DNA in close apposition. Mol. Cell. Biol. 13:2401–2410.
  • Jayaraman, L., G. K. M. Kanneganti, C. Zhu, T. Curran, S. Xanthoudakis, and J. Prives 1997. Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev. 11:558–570.
  • Johnson, P. 1993. Identification of C/EBP basic region residues involved in DNA sequence recognition and half-site spacing preference. Mol. Cell. Biol. 13:6919–6930.
  • Johnson, P. F. 1990. Transcriptional activators in hepatocytes. Cell Growth Diff. 1:47–52.
  • Ko, L. J., and J. Prives 1996. p53: puzzle and paradigm. Genes Dev. 10:1054–1072.
  • Kumar, G. K., A. A. Saadi, S.-S. Yang, and J. McCaughey 1979. Ataxia-telangiectasia and hepatocellular carcinoma. Am. J. Med. Sci. 278:157–160.
  • Lai, E., V. R. Prezioso, E. Smith, O. Litvin, R. H. Costa, and J. Darnell 1990. HNF-3A, a hepatocyte-enriched transcription factor of novel structure is regulated transcriptionally. Genes Dev. 4:1427–1436.
  • Leng, X., A. J. Cooney, S. Y. Tsae, and J. Tsai 1996. Molecular mechanisms of COUP-TF-mediated transcriptional repression: evidence for transrepression and active repression. Mol. Cell. Biol. 16:2332–2340.
  • Leveillard, T., L. Andera, N. Bissonnette, L. Schaeffer, L. Bracco, J.-M. Egly, and J. Wasylyk 1996. Functional interactions between p53 and TFIIH complex are affected by tumour-associated mutations. EMBO J. 15:1615–1624.
  • Levine, A. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331.
  • Lill, N. L., S. R. Grossman, D. Ginsberg, J. DeCaprio, and J. Livingston 1997. Binding and modulation of p53 by p300/CBP coactivators. Nature 387:823–827.
  • Liu, X., and J. Berk 1995. Reversal of in vitro p53 squelching by both TFIIB and TFIID. Mol. Cell. Biol. 15:6474–6478.
  • Ludwig, R. L., S. Bates, and J. Vousden 1996. Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol. Cell. Biol. 16:4952–4960.
  • Lutzker, S., and J. Levine 1996. A functionally inactive p53 protein in teratocarcinoma cells is activated by either DNA damage or cellular differentiation. Nat. Med. 2:804–810.
  • Maheswaran, S., C. Englert, P. Bennet, G. Heinrich, and J. Haber 1995. The WT1 gene product stabilizes p53 and inhibits p53-mediated apoptosis. Genes Dev. 9:2143–2156.
  • Maire, P., J. Wuarin, and J. Schibler 1989. The role of cis-acting promoter elements in tissue-specific albumin gene expression. Science 244:343–346.
  • Martinez, J., I. Georgoff, J. Marinez, and J. Levine 1991. Cellular localization and cell cycle regulation by a temperature-sensitive p53 protein. Genes Dev. 5:151–159.
  • McLure, K. G., and J. Lee 1998. How p53 binds DNA as a tetramer. EMBO J. 17:3342–3350.
  • Milne, D. M., R. H. Palmer, D. G. Campbell, and J. Meek 1992. Phosphorylation of the p53 tumor suppressor protein at three N-terminal sites by a novel casein kinase I-like enzyme. Oncogene 7:1361–1369.
  • Murphy, M., A. Hinman, and J. Levine 1996. Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes Dev. 10:2971–2980.
  • Nelson, R., and J. Long 1989. A general method of site-specific mutagenesis using a modification of the Thermus aquaticus polymerase chain reaction. Anal. Biochem. 180:147–151.
  • Opdecamp, K., C. Szpirer, and J. Szpirer 1991. Major chromatin changes accompany extinction of alpha-fetoprotein gene in hepatoma x fibroblast hybrids. Somatic Cell Mol. Genet. 17:49–55.
  • Ori, A., A. Zauberman, G. Doitsch, N. Paran, M. Oren, and J. Shaul 1998. p53 binds and represses the HBV enhancer: an adjacent enhancer element can reverse the transcription effect of p53. EMBO J. 17:544–553.
  • Qi, J.-S., V. Desai-Yajnik, Y. Yuan, and J. Samuels 1997. Constitutive activation of gene expression by thyroid hormone receptor results from reversal of p53-mediated repression. Mol. Cell. Biol. 17:7195–7297.
  • Rotter, V., R. Aloni-Grinstein, D. Schwartz, N. B. Elkind, A. Simons, R. Wolkowicz, M. Lavigne, P. Beserman, A. Kapon, and J. Goldfiner 1994. Does wild-type p53 play a role in normal cell differentiation? Sem. Cancer Biol. 5:229–236.
  • Sambrook, J., E. F. Fritsch, T. Maniatis 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
  • Shen, Y., and J. Shenk 1994. Relief of p53-mediated transcription repression by the adenovirus E1B 19-kDa protein or the cellular bcl-2 protein. Proc. Natl. Acad. Sci. USA 91:8940–8944.
  • Soddu, S., G. Blandino, R. Scardigli, R. Martinelli, M. G. Rizzo, M. Crescenzi, and J. Sacchi 1996. Wild-type p53 induces diverse effects in 32D cells expressing different oncogenes. Mol. Cell. Biol. 16:487–495.
  • Soddu, S., G. Blandino, R. Scardigli, S. Soen, A. Marchetti, M. G. Rizzo, G. Bossi, L. Cimino, M. Crescenzi, and J. Sacchi 1996. Interference with p53 protein inhibits hematopoietic and muscle differentiation. J. Cell Biol. 134:193–204.
  • Spear, B. T. 1994. Mouse a-fetoprotein gene 5′ regulatory elements are required for postnatal regulation by raf and Rif. Mol. Cell. Biol. 14:6497–6505.
  • Spear, B. T., T. Longley, S. Moulder, S. L. Wang, and J. Peterson 1995. A sensitive lacZ-based expression vector for analyzing transcriptional control elements in eukaryotic cells. DNA Cell Biol. 14:635–642.
  • Tabor, E. 1994. Tumor suppressor genes, growth factor genes, and oncogenes in hepatitis B virus-associated hepatocellular carcinoma. J. Med. Virol. 42:357–365.
  • Tan, T.-H., J. Wallis, and J. Levine 1986. Identification of the p53 protein domain involved in formation of the simian virus 40 large T-antigen-p53 protein complex. J. Virol. 59:574–583.
  • Tilghman, S. M. 1985. The structure and regulation of the alpha-fetoprotein and albumin genes. Oxf. Surv. Eukaryotic Genes 2:160–206.
  • Vacher, J., and J. Tilghman 1990. Dominant negative regulation of the mouse alpha-fetoprotein gene in adult liver. Science 250:1732–1735.
  • Waldman, T. A., and J. McIntire 1972. Serum alpha fetoprotein levels in patients with ataxia telangiectasia. Lancet 2:1112–1115.
  • Wang, Q., G. P. Zambetti, and J. Suttle 1997. Inhibition of DNA topoisomerase IIα gene expression by the p53 tumor suppressor. Mol. Cell. Biol. 17:389–397.
  • Wang, X. W., K. Forrester, J. Yeh, M. A. Feitelson, J.-R. Gu, and J. Harris 1994. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc. Natl. Acad. Sci. USA 91:2230–2234.
  • Weinberg, W. C., C. G. Azzoli, K. Chapman, A. J. Levine, and J. Yuspa 1995. p53-mediated transcriptional activity increases in differentiating epidermal keratinocytes in association with decreased p53 protein. Oncogene 10:2271–2279.
  • Wen, P., E. R. Groupp, G. Buzard, N. Crawford, and J. Locker 1991. Enhancer, repressor, and promoter specificities combine to regulate the rat α-fetoprotein Gene. DNA Cell Biol. 10:525–536.
  • Wen, P., and J. Locker 1994. A novel hepatocytic transcription factor that binds the α-fetoprotein promoter-linked coupling element. Mol. Cell. Biol. 14:6616–6626.
  • Wu, H., M. Wade, L. Krall, J. Grisham, Y. Xiong, and J. Van Dyke 1996. Targeted in vivo expression of the cyclin-dependent kinase inhibitor p21 halts hepatocyte cell-cycle progression, postnatal liver development, and regeneration. Genes Dev. 10:245–260.
  • Xu, Y., T. Ashley, E. E. Brainerd, R. T. Bronson, M. S. Meyn, and J. Baltimore 1996. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev. 10:2411–2422.
  • Yap, N., C.-L. Yu, and J. Cheng 1996. Modulation of the transcriptional activity of thyroid hormone receptors by the tumor suppressor p53. Proc. Natl. Acad. Sci. USA 93:4273–4277.
  • Yew, P. R., X. Liu, and J. Berk 1994. Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev. 8:190–202.
  • Zambetti, G. P., J. Bargonetti, K. Walker, C. Prives, and J. Levine 1992. Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Genes Dev. 6:1143–1152.
  • Zaret, K. S., and J. Stevens 1995. Expression of a highly unstable and insoluble transcription factor in Escherichia coli: purification and characterization of the fork head homolog HNF3alpha. Protein Expr. Purif. 6:821–825.
  • Zhang, D.-E., P. R. Hoyt, and J. Papaconstantinou 1990. Localization of DNA protein-binding sites in the proximal and distal promoter regions of the mouse α-fetoprotein gene. J. Biol. Chem. 265:3382–3391.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.