17
Views
58
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The Amino-Terminal C/H1 Domain of CREB Binding Protein Mediates Zta Transcriptional Activation of Latent Epstein-Barr Virus

, , , , &
Pages 1617-1626 | Received 19 Aug 1998, Accepted 30 Nov 1998, Published online: 27 Mar 2023

REFERENCES

  • Abraham, S. E., S. Lobo, P. Yaciuk, H.-G. H. Wang, and J. Moran 1993. p300, and p300-associated proteins, are components of TATA-binding protein (TBP) complexes. Oncogene 8:1639–1647.
  • Arany, Z., D. Newsome, E. Oldread, D. M. Livingston, and J. Eckner 1995. A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 374:81–84.
  • Bannister, A. J., and J. Kouzarides 1996. The CBP co-activator is a histone acetyltransferase. Nature 384:641–643.
  • Barberis, A., J. Pearlberg, N. Simkovich, S. Farrell, P. Reinbagel, C. Bamdad, G. Sigal, and J. Ptashne 1995. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81:359–368.
  • Ben-Sasson, S. A., and J. Klein 1981. Activation of the Epstein-Barr virus genome by 5-aza-cytidine in latently infected human lymphoid lines. Int. J. Cancer 28:131–135.
  • Berger, S. L., B. Pina, N. Silverman, G. A. Marcus, J. Agapite, J. L. Regier, S. J. Triezenberg, and J. Guarente 1992. Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell 70:252–265.
  • Blobel, G. A., T. Nakajima, R. Eckner, M. Montminy, and J. Orkin 1998. CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc. Natl. Acad. Sci. USA 95:2061–2066.
  • Candau, R., P. A. Moore, L. Wang, N. Barlev, C. Y. Ying, C. A. Rosen, and J. Berger 1996. Identification of human proteins functionally conserved with the yeast putative adapter ADA2 and GCN5. Mol. Cell. Biol. 16:593–602.
  • Carey, M., J. Kolman, D. A. Katz, L. Gradoville, L. Barberis, and J. Miller 1992. Transcriptional synergy by the Epstein-Barr virus transactivator ZEBRA. J. Virol. 66:4803–4813.
  • Cassinoti, P., and J. Weitz 1994. Increasing the sensitivity of a common CAT assay. BioTechniques 17:36–39.
  • Chen, C., and J. Okayama 1987. High-efficiency transfection of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7:2745–2752.
  • Chen, H., R. J. Lin, R. L. Schlitz, D. Chakravarti, A. Nash, L. Nagy, M. L. Privalsky, Y. Nakatani, and J. Evans 1997. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90:569–580.
  • Chevallier, G. A., E. Manet, P. Chavrier, C. Mosnier, J. Daillie, and J. Sergeant 1986. Both Epstein-Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO J. 5:3243–3249.
  • Chi, T., and J. Carey 1996. Assembly of the isomerized TFIIA-TFIID-TATA ternary complex is necessary and sufficient for gene activation. Genes Dev. 10:2540–2550.
  • Chi, T., P. Lieberman, K. Ellwood, and J. Carey 1995. A general mechanism for transcriptional synergy by eukaryotic activators. Nature 377:254–257.
  • Chrivia, J. C., R. P. Kwok, N. Lamb, M. Hagiwara, M. R. Montminy, and J. Goodman 1993. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365:855–859.
  • Countryman, J., and J. Miller 1985. Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc. Natl. Acad. Sci. USA 82:4085–4089.
  • Dyson, P. J., and J. Farrell 1985. Chromatin structure of Epstein-Barr virus. J. Gen. Virol. 66:1931–1940.
  • Eckner, R., M. E. Ewen, D. Newsome, M. Gerdes, J. A. DeCaprio, J. B. Lawrence, and J. Livingston 1994. Molecular cloning and functional analysis of the adenovirus E1A-associated 300 kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 8:869–884.
  • Faggioni, A., C. Zompetta, S. Grimaldi, G. Barile, L. Frati, and J. Lazdins 1986. Calcium modulation activates Epstein-Barr virus genome in latently infected cells. Science 232:1554–1556.
  • Farrell, P. J., D. T. Rowe, C. M. Rooney, and J. Kouzarides 1989. Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. EMBO J. 8:127–132.
  • Giles, R. H., D. J. M. Peters, and J. Bruening 1998. Conjunction dysfunction: CBP/p300 in human disease. Trends Genet. 14:178–183.
  • Glaser, R., and J. Nonoyama 1974. Host cell regulation of induction of Epstein-Barr virus. J. Virol. 14:174–176.
  • Grunstein, M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389:349–352.
  • Gu, W., and J. Roeder 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606.
  • Gu, W., X. L. Shi, and J. Roeder 1997. Synergistic activation of transcription by CBP and p53. Nature 387:819–823.
  • Gutsch, D. E., E. A. Holley-Guthrie, Q. Zhang, B. Stein, M. A. Blanar, A. S. Baldwin, and J. Kenney 1994. The bZIP transactivator of Epstein-Barr virus, BZLF1, functionally and physically interacts with the p65 subunit of NF-κB. Mol. Cell. Biol. 14:1939–1948.
  • Hottinger, M. O., L. K. Felzien, and J. Nabel 1998. Modulation of cytokine-induced HIV gene expression by competitive binding of transcription factors to the coactivator p300. EMBO J. 17:3124–3134.
  • Janknecht, R., and J. Hunter 1996. Transcription. A growing coactivator network. Nature 383:22–23.
  • Kamei, Y., L. Xu, T. Heinzel, J. Torchia, R. Kurokawa, B. Gloss, S. C. Lin, R. A. Heyman, D. W. Rose, C. K. Glass, and J. Rosenfeld 1996. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:403–414.
  • Kenney, S., J. Kamine, E. Holley-Guthrie, J.-C. Lin, E.-C. Mar, and J. Pagano 1988. The Epstein-Barr virus (EBV) BZLF1 immediate-early gene product differentially affects latent versus productive EBV promoters. J. Virol. 63:1729–1736.
  • Kieff, E. 1996. Epstein-Barr virus and its replication, p. 2343–2396 3rd ed. In B. N. Fields, D. M. Knipe, P. M. Howley (ed.), Fields virology, Lippincott-Raven Publishers, Philadelphia, Pa.
  • Kobayashi, N., T. G. Boyer, and J. Berk 1995. A class of activation domains interacts directly with TFIIA and stimulates TFIIA-TFIID-promoter complex assembly. Mol. Cell. Biol. 15:6465–6473.
  • Korzus, E., J. Torchia, D. W. Rose, L. Xu, R. Kurokawa, E. M. McInerney, T. M. Mullen, C. K. Glass, and J. Rosenfeld 1998. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279:703–707.
  • Kruh, J. 1982. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol. Cell. Biochem. 42:65–82.
  • Kurokawa, R., D. Kalafus, M. H. Ogliastro, C. Kioussi, L. Xu, J. Torchia, M. G. Rosenfeld, and J. Glass 1998. Differential use of CREB binding protein-coactivator complexes. Science 279:700–703.
  • Kwok, R. J., J. Lundblad, J. Chrivia, J. Richards, H. Bachinger, R. Brennan, S. Roberts, M. Green, and J. Goodman 1994. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370:223–226.
  • Lieberman, P. 1994. Identification of functional targets of the Zta transcriptional activator by formation of stable preinitiation complex intermediates. Mol. Cell. Biol. 14:8365–8375.
  • Lieberman, P. M., and J. Berk 1994. A mechanism for TAFs in transcriptional activation: activation domain enhancement of TFIID-TFIIA-promoter DNA complex formation. Genes Dev. 8:995–1006.
  • Lieberman, P. M., J. M. Hardwick, and J. Hayward 1989. Responsiveness of the Epstein-Barr virus NotI repeat promoter to the Z transactivator is mediated in a cell-type-specific manner by two independent signal regions. J. Virol. 63:3040–3050.
  • Lieberman, P. M., J. M. Hardwick, J. Sample, G. S. Hayward, and J. Hayward 1990. The zta transactivator involved in induction of lytic cycle gene expression in Epstein-Barr virus-infected lymphocytes binds to both AP-1 and ZRE sites in target promoter and enhancer regions. J. Virol. 64:1143–1155.
  • Lieberman, P. M., J. Ozer, and J. Gursel 1997. Requirement for TFIIA-TFIID recruitment by an activator depends on promoter structure and template competition. Mol. Cell. Biol. 17:6624–6632.
  • Lill, N. L., S. R. Grossman, D. Ginsberg, J. DeCaprio, and J. Livingston 1997. Binding and modulation of p53 by p300/CBP coactivators. Nature 387:823–827.
  • Lin, J. C., M. C. Smith, and J. Pagano 1981. Induction of replication of Epstein-Barr virus DNA by 12-O-tetradecanoyl-phorbol-13-acetate. II. Inhibition by retinoic acid and 9-(2-hydroxyethoxymethyl) guanine. Virology 111:294–298.
  • Lundblad, J. R., R. P. Kwok, M. E. Laurance, M. L. Harter, and J. Goodman 1995. Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 374:85–88.
  • Martinez-Balbas, M. A., A. J. Bannister, K. Martin, P. Haus-Seuffert, M. Meisterernst, and J. Kouzarides 1998. The acetyltransferase activity of CBP stimulates transcription. EMBO J. 17:2886–2893.
  • Miller, G. 1990. The switch between latency and replication of Epstein-Barr virus. J. Infect. Dis. 161:833–844.
  • Nakajima, T., C. Uchida, S. F. Anderson, C. G. Lee, J. Hurwitz, J. D. Parvin, and J. Montminy 1997. RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90:1107–1112.
  • Nakajima, T., C. Uchida, S. F. Anderson, J. D. Parvin, and J. Montminy 1997. Analysis of a cAMP-responsive activator reveals a two-component mechanism for transcriptional induction via signal-dependent factors. Genes Dev. 11:738–747.
  • Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and J. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959.
  • Ozer, J., P. A. Moore, A. H. Bolden, A. Lee, C. A. Rosen, and J. Lieberman 1994. Molecular cloning of the small (gamma) subunit of human TFIIA reveals functions critical for activated transcription. Genes Dev. 8:2324–2335.
  • Parker, D., K. Ferreri, T. Nakajima, V. J. LaMorte, R. Evans, S. C. Koerber, C. Hoeger, and J. Montminy 1996. Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol. Cell. Biol. 16:694–703.
  • Perkins, N. D., L. K. Felzien, J. C. Betts, K. Leung, D. H. Beach, and J. Nabel 1997. Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science 275:523–527.
  • Ptashne, M., and J. Gann 1997. Transcriptional activation by recruitment. Nature 386:569–577.
  • Rickinson, A. B., E. Kieff 1996. Epstein-Barr virus, p. 2397–2446 In B. N. Fields, D. M. Knipe, P. M. Howley (ed.), Fields virology, 3rd ed. Lippincott-Raven Publishers, Philadelphia, Pa.
  • Saemundsen, A. K., B. Kallin, and J. Klein 1980. Effect of n-butyrate on cellular and viral DNA synthesis in cells latently infected with Epstein-Barr virus. Virology 107:557–561.
  • Sarisky, R. T., Z. Gao, P. M. Lieberman, E. D. Fixman, G. S. Hayward, and J. Hayward 1996. Evidence for a replication function associated with the activation domain of the Epstein-Barr virus Zta transactivator. J. Virol. 70:8340–8347.
  • Scolnick, D. M., N. H. Chehab, E. S. Stavridi, M. C. Lien, L. Caruso, E. Moran, S. L. Berger, and J. Halazonetis 1997. CREB-binding protein and p300/CBP-associated factor are transcriptional coactivators of the p53 tumor suppressor protein. Cancer Res. 57:3693–3696.
  • Shaw, J. E., L. F. Levinger, and J. Carter 1979. Nucleosomal structure of Epstein-Barr virus DNA in transformed cell lines. J. Virol. 29:657–665.
  • Shikama, N., J. Lyon, and J. La Thangue 1997. The p300/CBP family: integration signals with transcription factors and chromatin. Trends Cell Biol. 7:230–236.
  • Sista, N. D., J. S. Pagano, W. Liao, and J. Kenney 1993. Retinoic acid is a negative regulator of the Epstein-Barr virus protein (BZLF1) that mediates disruption of latent infection. Proc. Natl. Acad. Sci. USA 90:3894–3898.
  • Sundar, S. K., P. H. Levine, D. V. Ablashi, and J. Menezes 1984. Retinoic acid and steroids inhibit Epstein-Barr virus-induced nuclear antigen, DNA synthesis and lymphocyte transformation. Anticancer Res. 4:415–418.
  • Swope, D. L., C. L. Mueller, and J. Chrivia 1996. CREB-binding protein activates transcription through multiple domains. J. Biol. Chem. 271:28138–28145.
  • Torchia, J., C. Glass, and J. Rosenfeld 1998. Co-activators and co-repressors in the integration of transcriptional responses. Curr. Opin. Cell Biol. 10:373–383.
  • Torchia, J., D. W. Rose, J. Inostroza, Y. Kamei, S. Westin, C. K. Glass, and J. Rosenfeld 1997. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387:677–684.
  • Wysokenski, D. A., and J. Yates 1989. Multiple EBNA1-binding sites are required to form an EBNA1-dependent enhancer and to activate a minimal replicative origin within oriP of Epstein-Barr virus. J. Virol. 63:2657–2666.
  • Yamamoto, N., K. Bister, and J. zur Hausen 1979. Retinoic acid inhibition of Epstein-Barr virus induction. Nature 278:553–554.
  • Yang, X. J., V. V. Ogryzko, J. Nishikawa, B. H. Howard, and J. Nakatani 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324.
  • Yuan, W., G. Condorelli, M. Caruso, A. Felsani, and J. Giordano 1996. Human p300 protein is a coactivator for the transcription factor MyoD. J. Biol. Chem. 271:9009–9013.
  • Zhang, Q., D. Gutsch, and J. Kenney 1994. Functional and physical interaction between p53 and BZLF1: implications for Epstein-Barr virus latency. Mol. Cell. Biol. 14:1929–1938.
  • Zhong, H., R. E. Voll, and J. Ghosh 1998. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with coactivator CBP/p300. Mol. Cell 1:661–671.
  • zur Hausen, H., F. J. O’Neill, U. K. Freese, and J. Hecher 1978. Persisting oncogenic herpesvirus induced by tumor promoter TPA. Nature 272:373–375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.