16
Views
100
CrossRef citations to date
0
Altmetric
Gene Expression

Substrate Specificities of SR Proteins in Constitutive Splicing Are Determined by Their RNA Recognition Motifs and Composite Pre-mRNA Exonic Elements

, , , &
Pages 1853-1863 | Received 24 Sep 1998, Accepted 23 Nov 1998, Published online: 27 Mar 2023

REFERENCES

  • Amendt, B. A., Z. H. Si, and J. Stoltzfus 1995. Presence of exon splicing silencers within human immunodeficiency virus type 1 tat exon 2 and tat-rev exon 3: evidence for inhibition mediated by cellular factors. Mol. Cell. Biol. 15:4606–4615 (Erratum, 15:5480.)
  • Birney, E., S. Kumar, and J. Krainer 1993. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res. 21:5803–5816.
  • Cáceres, J. F., and J. Krainer 1993. Functional analysis of pre-mRNA splicing factor SF2/ASF structural domains. EMBO J. 12:4715–4726.
  • Cáceres, J. F., A. R. Krainer 1997. Mammalian pre-mRNA splicing factors, p. 174–212. In A. R. Krainer (ed.), Eukaryotic mRNA processing. Oxford University Press, Oxford, United Kingdom.
  • Cáceres, J. F., T. Misteli, G. R. Screaton, D. L. Spector, and J. Krainer 1997. Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity. J. Cell Biol. 138:225–238.
  • Cáceres, J. F., G. R. Screaton, and J. Krainer 1998. A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes Dev. 12:55–66.
  • Cavaloc, Y., M. Popielarz, J. P. Fuchs, R. Gattoni, and J. Stévenin 1994. Characterization and cloning of the human splicing factor 9G8: a novel 35 kDa factor of the serine/arginine protein family. EMBO J. 13:2639–2649.
  • Chandler, S. D., A. Mayeda, J. M. Yeakley, A. R. Krainer, and J. Fu 1997. RNA splicing specificity determined by the coordinated action of RNA recognition motifs in SR proteins. Proc. Natl. Acad. Sci. USA 94:3596–3601.
  • Fu, X.-D. 1993. Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature 365:82–85.
  • Fu, X.-D. 1995. The superfamily of arginine/serine-rich splicing factors. RNA 1:663–680.
  • Gallego, M. E., R. Gattoni, J. Stévenin, J. Marie, and J. Expert-Bezançon 1997. The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the β-tropomyosin alternative exon 6A. EMBO J. 16:1772–1784.
  • Gontarek, R. R., and J. Derse 1996. Interactions among SR proteins, an exonic splicing enhancer, and a lentivirus Rev protein regulate alternative splicing. Mol. Cell. Biol. 16:2325–2331.
  • Heinrichs, V., and J. Baker 1995. The Drosophila SR protein RBP1 contributes to the regulation of doublesex alternative splicing by recognizing RBP1 RNA target sequences. EMBO J. 14:3987–4000.
  • Hertel, K. J., and J. Maniatis 1998. The function of multisite splicing enhancers. Mol. Cell 1:449–455.
  • Himmelspach, M., Y. Cavaloc, K. Chebli, J. Stévenin, and J. Gattoni 1995. Titration of serine/arginine (SR) splicing factors during adenoviral infection modulates E1A pre-mRNA alternative splicing. RNA 1:794–806.
  • Kanopka, A., O. Mühlemann, and J. Akusjärvi 1996. Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature 381:535–538.
  • Krainer A. R. 1997. Eukaryotic mRNA processing. Oxford University Press, Oxford, United Kingdom.
  • Krainer, A. R., G. C. Conway, and J. Kozak 1990. Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells. Genes Dev. 4:1158–1171.
  • Krainer, A. R., T. Maniatis, B. Ruskin, and J. Green 1984. Normal and mutant human β-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell 36:993–1005.
  • Lamond A. I. 1995. Pre-mRNA processing. R. G. Landes Company, Austin, Tex.
  • Liu, H.-X., M. Zhang, and J. Krainer 1998. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev. 12:1998–2012.
  • Manley, J. L., and J. Tacke 1996. SR proteins and splicing control. Genes Dev. 10:1569–1579.
  • Mayeda, A., and A. R. Krainer. Mammalian in vitro splicing assays. Methods Mol. Biol., in press.
  • Mayeda, A., and A. R. Krainer. Preparation of HeLa cell nuclear and cytosolic S100 extracts for in vitro splicing. Methods Mol. Biol., in press.
  • Mayeda, A., S. H. Munroe, R.-M. Xu, and J. Krainer 1998. Distinct functions of the closely related tandem RNA-recognition motifs of hnRNP A1. RNA 4:1111–1123.
  • McNally, L. M., and J. McNally 1996. SR protein splicing factors interact with the Rous sarcoma virus negative regulator of splicing element. J. Virol. 70:1163–1172.
  • Peng, X., and J. Mount 1995. Genetic enhancement of RNA-processing defects by a dominant mutation in B52, the Drosophila gene for an SR protein splicing factor. Mol. Cell. Biol. 15:6273–6282.
  • Ramchatesingh, J., A. M. Zahler, K. M. Neugebauer, M. B. Roth, and J. Cooper 1995. A subset of SR proteins activates splicing of the cardiac troponin T alternative exon by direct interactions with an exonic enhancer. Mol. Cell. Biol. 15:4898–4907.
  • Ring, H. Z., and J. Lis 1994. The SR protein B52/SRp55 is essential for Drosophila development. Mol. Cell. Biol. 14:7499–7506.
  • Ruskin, B., A. R. Krainer, T. Maniatis, and J. Green 1984. Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38:317–331.
  • Screaton, G. R., J. F. Cáceres, A. Mayeda, M. V. Bell, M. Plebanski, D. G. Jackson, J. I. Bell, and J. Krainer 1995. Identification and characterization of three members of the human SR family of pre-mRNA splicing factors. EMBO J. 14:4336–4349.
  • Shi, H., B. E. Hoffman, and J. Lis 1997. A specific RNA hairpin loop structure binds the RNA recognition motifs of the Drosophila SR protein B52. Mol. Cell. Biol. 17:2649–2657.
  • Si, Z.-H., D. Rauch, and J. Stoltzfus 1998. The exon splicing silencer in human immunodeficiency virus type 1 tat exon 3 is bipartite and acts early in spliceosome assembly. Mol. Cell. Biol. 18:5404–5413.
  • Staffa, A., and J. Cochrane 1995. Identification of positive and negative splicing regulatory elements within the terminal tat-rev exon of human immunodeficiency virus type 1. Mol. Cell. Biol. 15:4597–4606.
  • Staknis, D., and J. Reed 1994. SR proteins promote the first specific recognition of pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol. Cell. Biol. 14:7670–7682.
  • Sun, Q., A. Mayeda, R. K. Hampson, A. R. Krainer, and J. Rottman 1993. General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Dev. 7:2598–2608.
  • Tacke, R., Y. Chen, and J. Manley 1997. Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer. Proc. Natl. Acad. Sci. USA 94:1148–1153.
  • Tacke, R., and J. Manley 1995. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J. 14:3540–3551.
  • Tanaka, K., A. Watakabe, and J. Shimura 1994. Polypurine sequences within a downstream exon function as a splicing enhancer. Mol. Cell. Biol. 14:1347–1354.
  • Tian, M., and J. Maniatis 1993. A splicing enhancer complex controls alternative splicing of doublesex pre-mRNA. Cell 74:105–114.
  • Wang, J., Y. Takagaki, and J. Manley 1996. Targeted disruption of an essential vertebrate gene: ASF/SF2 is required for cell viability. Genes Dev. 10:2588–2599.
  • Wang, J., S.-H. Xiao, and J. Manley 1998. Genetic analysis of the SR protein ASF/SF2: interchangeability of RS domains and negative control of splicing. Genes Dev. 12:2222–2233.
  • Watakabe, A., K. Inoue, H. Sakamoto, and J. Shimura 1989. A secondary structure at the 3′ splice site affects the in vitro splicing reaction of mouse immunoglobulin μ chain pre-mRNAs. Nucleic Acids Res. 17:8159–8169.
  • Xiao, S. H., and J. Manley 1997. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 11:334–344.
  • Zahler, A. M., K. M. Neugebauer, W. S. Lane, and J. Roth 1993. Distinct functions of SR proteins in alternative pre-mRNA splicing. Science 260:219–222.
  • Zahler, A. M., and J. Roth 1995. Distinct functions of SR proteins in recruitment of U1 small nuclear ribonucleoprotein to alternative 5′ splice sites. Proc. Natl. Acad. Sci. USA 92:2642–2646.
  • Zhang, W. J., and J. Wu 1996. Functional properties of p54, a novel SR protein active in constitutive and alternative splicing. Mol. Cell. Biol. 16:5400–5408.
  • Zuo, P., and J. Manley 1993. Functional domains of the human splicing factor ASF/SF2. EMBO J. 12:4727–4737.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.