84
Views
193
CrossRef citations to date
0
Altmetric
Gene Expression

Mammalian Staufen Is a Double-Stranded-RNA- and Tubulin-Binding Protein Which Localizes to the Rough Endoplasmic Reticulum

, , , &
Pages 2220-2230 | Received 09 Sep 1998, Accepted 17 Nov 1998, Published online: 27 Mar 2023

REFERENCES

  • Ainger, K., D. Avossa, F. Morgan, S. J. Hill, C. Barry, E. Barbarese, and J. Carson 1993. Transport and localization of exogenous myelin basic protein mRNA microinjected into oligodendrocytes. J. Cell Biol. 123:431–441.
  • Aloyz, R. S., and J. DesGroseillers 1995. Processing of the L5-67 precursor peptide and characterization of LUQIN in the central nervous system of Aplysia californica. Peptides 16:331–338.
  • Bassell, G., and J. Singer 1997. mRNA and cytoskeletal filaments. Curr. Opin. Cell Biol. 9:109–115.
  • Benkirane, M., C. Neuveut, R. F. Chun, S. M. Smith, C. E. Samuel, A. Gatignol, and J. Jeang 1997. Oncogenic potential of TAR RNA binding protein TRBP and its regulatory interaction with RNA-dependent protein kinase PKR. EMBO J. 16:611–624.
  • Breitwieser, W., F.-H. Markussen, H. Horstmann, and J. Ephrussi 1996. Oskar protein interaction with Vasa represents an essential step in polar granule assembly. Genes Dev. 10:2179–2188.
  • Brizard, F., and L. DesGroseillers. Submitted for publication.
  • Broadus, J., S. Fuerstenberg, and J. Doe 1998. Staufen-dependent localization of prospero mRNA contributes to neuroblast daughter-cell fate. Nature 391:792–795.
  • Cosentino, G. P., S. Venkatesan, F. C. Serluca, S. Green, M. B. Mathews, and J. Sonenberg 1995. Double-stranded-RNA-dependent protein kinase and TAR RNA-binding protein from homo- and heterodimers in vivo. Proc. Natl. Acad. Sci. USA 92:9445–9449.
  • Crino, P. B., and J. Eberwine 1996. Molecular characterization of the dendritic growth cone: regulated mRNA transport and local protein synthesis. Neuron 17:1173–1187.
  • Davis, L., G. A. Banker, and J. Steward 1987. Selective dendritic transport of RNA in hippocampal neurons in culture. Nature 330:477–479.
  • DesGroseillers, L., and J. Lemieux 1996. Localization of a human double-stranded RNA-binding protein gene (STAU) to band 20q13.1 by fluorescence in situ hybridization. Genomics 36:527–529.
  • Deshler, J. O., M. I. Highett, and J. Schnapp 1997. Localization of Xenopus Vg1 mRNA by Vera protein and the endoplasmic reticulum. Science 276:1128–1131.
  • Deshler, J. O., M. I. Highett, T. Abramson, and J. Schnapp 1998. A highly conserved RNA-binding protein for cytoplasmic localization in vertebrates. Curr. Biol. 8:489–496.
  • Eckmann, C. R., and J. Jantsch 1997. Xlrbpa, a double-stranded RNA-binding protein associated with ribosomes and heterogeneous nuclear RNPs. J. Cell Biol. 138:239–253.
  • Elisha, Z., L. Havin, I. Ringel, and J. Yisraeli 1995. Vgl RNA binding protein mediates the association of Vgl RNA with microtubules in Xenopus oocytes. EMBO J. 14:5109–5114.
  • Ephrussi, A., L. K. Dickinson, and J. Lehamnn 1991. Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66:37–50.
  • Erdelyi, M., A. M. Michon, A. Guichet, J. B. Glotzer, and J. Ephrussi 1995. Requirement for Drosophila cytoplasmic tropomyosin in oskar mRNA localization. Nature 377:524–527.
  • Ferrandon, D., L. Elphick, C. Nüsslein-Volhard, and J. St Johnston 1994. Staufen protein associates with the 3′UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner. Cell 79:1221–1232.
  • Ferrandon, D., I. Koch, E. Westhof, and J. Nüsslein-Volhard 1997. RNA-RNA interaction is required for the formation of specific bicoid mRNA 3′UTR-staufen ribonucleoprotein particles. EMBO J. 16:1751–1758.
  • Forristall, C., M. Pondel, and J. King 1995. Patterns of localization and cytoskeletal association of two vegetally localized RNAs, Vgl and Xcat-2. Development 121:201–208.
  • Gatignol, A., C. Buckler, and J. Jeang 1993. Relatedness of an RNA-binding motif in human immunodeficiency virus type 1 TAR RNA-binding protein TRBP to human P1/dsI kinase and Drosophila Staufen. Mol. Cell. Biol. 13:2193–2202.
  • Gazzaley, A. H., D. L. Benson, G. W. Huntley, and J. Morrison 1997. Differential subcellular regulation of NMDAR1 protein and mRNA in dendrites of dendate gyrus granule cells after perforant path transection. J. Neurosci. 17:2006–2017.
  • Havin, L., A. Git, Z. Elisha, F. Obeerman, K. Yaniv, S. P. Schwartz, N. Standart, and J. Yisraeli 1998. RNA-binding protein conserved in both microtubule- and microfilament-based RNA localization. Genes Dev. 12:1593–1598.
  • Hochstenback, F., V. David, S. Watkins, and J. Brenner 1992. Endoplasmic reticulum resident protein of 90 kilodaltons associates with the T- and B-cell antigen receptors and major histocompatibility complex antigens during assembly. Proc. Natl. Acad. Sci. USA 89:4734–4738.
  • Jockers, R., A. Da Silva, A. D. Strosberg, M. Bouvier, and J. Marullo 1996. New molecular and structural determinants involved in β2-adrenergic receptor desensitization and sequestration. J. Biol. Chem. 271:9355–9362.
  • Kang, H., and J. Schuman 1996. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273:1402–1406.
  • Kiebler, M. Personal communication.
  • Kim-Ha, J., J. L. Smith, and J. Macdonald 1991. Oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 66:23–35.
  • Kim-Ha, J., K. Kerr, and J. Macdonald 1995. Translational regulation of oskar mRNA by Bruno, an ovarian RNA-binding protein, is essential. Cell 81:403–412.
  • Kislauskis, E. H., X. Zhu, and J. Singer 1997. β-Actin messenger RNA localization and protein synthesis augment cell motility. J. Cell Biol. 136:1263–1270.
  • Kloc, M., and J. Etkin 1994. Delocalization of Vg1 mRNA from the vegetal cortex in Xenopus oocytes after destruction of Xlsirt RNA. Science 265:1101–1103.
  • Knowles, R. B., J. H. Sabry, M. E. Martone, T. J. Deerinck, M. H. Ellisman, G. J. Bassell, and J. Kosik 1996. Translocation of RNA granules in living neurons. J. Neurosci. 16:7812–7820.
  • Kraut, R., and J. Campos-Ortega 1996. Inscuteable, a neural precursor gene of Drosophila encodes a candidate for a cytoskeletal adaptor protein. Dev. Biol. 174:66–81.
  • Krovat, B. C., and J. Jantsch 1996. Comparative mutational analysis of the double-stranded RNA binding domains of Xenopus laevis RNA-binding protein. A. J. Biol. Chem. 271:28112–28119.
  • Labuda, D., E. Zietkiewicz, G. A. Mitchell 1995. Alu elements as a source of genomic variation: deleterious effects and evolutionary novelties, p. 1–24. In R. J. Maraia (ed.), The impact of short interspersed elements (SINEs) on the host genome. R. G. Landes Company, Austin, Tex.
  • Li, P., X. Yang, M. Wasser, Y. Cai, and J. Chia 1997. Inscuteable and staufen mediate asymmetric localization and segregation of prospero RNA during Drosophila neuroblast cell divisions. Cell 90:437–447.
  • Long, R. M., R. H. Singer, X. Meng, I. Gonzalez, K. Nasmyth, and J. Jansen 1997. Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 177:383–387.
  • Martin, K. C., A. Casadio, H. Zhu, E. Yaping, J. C. Rose, M. Chen, C. H. Bailey, and J. Kandel 1997. Synapse-specific, long-term facilitation of Aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 91:927–938.
  • McCormack, S. J., L. G. Ortega, J. P. Doohan, and J. Samuel 1994. Mechanism of interferon action: motif 1 of the interferon-induced, RNA-dependent protein kinase (PKR) is sufficient to mediate RNA-binding activity. Virology 198:92–99.
  • Ming, L., and L. DesGroseillers. Unpublished data.
  • Mouland, A. J., J. Mercier, L. Wickham, L. DesGroseillers, and E. A. Cohen. Submitted for publication.
  • Nakielny, S., U. Fischer, W. M. Michael, and J. Dreyfuss 1997. RNA transport. Annu. Rev. Neurosci. 20:269–301.
  • Okita, T. W., X. Li, and J. Roberts 1994. Targeting of mRNAs to domains of the endoplasmic reticulum. Trends Biochem. Sci. 4:91–96.
  • Pachter, J. S. 1992. Association of mRNA with the cytoskeletal framework: its role in the regulation of gene expression. Crit. Rev. Eukaryotic Gene Expr. 2:1–18.
  • Pokrywka, N. J., and J. Stephenson 1995. Microtubules are a general component of mRNA localization systems in Drosophila oocytes. Dev. Biol. 167:363–370.
  • Rings, E.H.H.M., H. A. Büller, A. M. Neele, and J. Dekker 1994. Protein sorting versus messenger RNA sorting? Eur. J. Cell Biol. 63:161–171.
  • Ross, A. F., Y. Oleynikov, E. H. Kisllauskis, K. L. Taneja, and J. Singer 1997. Characterization of a β-actin mRNA zipcode-binding protein. Mol. Cell. Biol. 17:2158–2165.
  • Schmedt, C., S. R. Green, L. Manche, D. R. Taylor, Y. Ma, and J. Mathews 1995. Functional characterization of the RNA-binding domain and motif of the double-stranded RNA-dependent protein kinase DAI (PKR). J. Mol. Biol. 249:29–44.
  • Schumacher, J. M., K. Lee, S. Edelhoff, and J. Braun 1995. Spnr, a murine RNA-binding protein that is localized to cytoplasmic microtubules. J. Cell Biol. 129:1023–1032.
  • Schwartz, S. P., L. Aisenthal, Z. Elisha, F. Oberman, and J. Yisraeli 1992. A 69-kDa RNA-binding protein from Xenopus oocytes recognizes a common motif in two vegetally localized maternal mRNAs. Proc. Natl. Acad. Sci. USA 89:11895–11899.
  • Steward, O. 1997. mRNA localization in neurons: a multipurpose mechanism? Neuron 18:9–12.
  • St. Johnston, D., W. Driever, T. Berleth, S. Richstein, and J. Nüsslein-Volhard 1989. Multiple steps in the localization of bicoid RNA to the anterior pole of the Drosophila oocyte. Dev. Suppl. 107:13–19.
  • St Johnston, D., D. Beuchle, and J. Nüsslein-Volhard 1991. Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66:51–63.
  • St Johnston, D., N. H. Brown, J. G. Gall, and J. Jantsch 1992. A conserved double-stranded RNA-binding domain. Proc. Natl. Acad. Sci. USA 89:10979–10983.
  • St Johnston, D. 1995. The intracellular localization of messenger RNAs. Cell 81:161–170.
  • Takizawa, P. A., A. Sil, J. R. Swedlow, I. Herskowitz, and J. Vale 1997. Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature 389:90–93.
  • Terasaki, M., L. B. Chen, and J. Fujiwara 1986. Microtubules and the endoplasmic reticulum are highly interdependent structures. J. Cell Biol. 103:1557–1568.
  • Tetzlaff, M. T., H. Jäckle, and J. Pankratz 1996. Lack of Drosophila cytoskeletal tropomyosin affects head morphogenesis and the accumulation of oskar mRNA required for germ cell formation. EMBO J. 15:1247–1254.
  • Tiedge, H., R. T. Fremeau Jr., P. H. Weinstock, O. Arancio, and J. Brosius 1991. Dendritic localization of neural BC1 RNA. Proc. Natl. Acad. Sci. USA 88:2093–2097.
  • Tiedge, H., A. Zhou, N. A. Thorn, and J. Brosius 1993. Transport of BC1 RNA in hypothalamo-neurohypophyseal axons. J. Neurosci. 13:4214–4219.
  • Tongiorgi, E., M. Righi, and J. Cattaneo 1997. Activity-dependent dendritic targeting of BDNF and TrkB mRNAs in hippocampal neurons. J. Neurosci. 17:9492–9505.
  • Wickham, L., and J. DesGroseillers 1991. A bradykinin-like neuropeptide precursor gene is expressed in neuron L5 of Aplysia californica. DNA Cell Biol. 10:249–258.
  • Wilhelm, J. E., and J. Vale 1993. RNA on the move: the mRNA localization pathway. J. Cell Biol. 123:269–274.
  • Wilsch-Bräuninger, M., H. Schwarz, and J. Nüsslein-Volhard 1997. A sponge-like structure involved in the association and transport of maternal products during Drosophila oogenesis. J. Cell Biol. 139:817–829.
  • Zauner, W., J. Kratz, J. Staunton, P. Feick, and J. Wiche 1992. Identification of two distinct microtubule binding domains on recombinant rat MAP1B. Eur. J. Cell Biol. 57:66–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.