56
Views
614
CrossRef citations to date
0
Altmetric
Cell Growth and Development

NF-κB Function in Growth Control: Regulation of Cyclin D1 Expression and G0/G1-to-S-Phase Transition

, , , , &
Pages 2690-2698 | Received 27 Jul 1998, Accepted 30 Dec 1998, Published online: 28 Mar 2023

REFERENCES

  • Aktas, H., H. Cai, and J. Cooper 1997. Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. Mol. Cell. Biol. 17:3850–3857.
  • Albanese, C., J. Johnson, G. Watanabe, N. Eklund, D. Vu, A. Arnold, and J. Pestell 1995. Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J. Biol. Chem. 270:23589–23597.
  • Baeuerle, P. A., and J. Baltimore 1996. NF-κB: ten years after. Cell 87:13–20.
  • Baichwal, V. R., and J. Baeuerle 1997. Activate NF-κB or die? Curr. Biol. 7:R94–R96.
  • Baldwin, A. S. Jr.. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–683.
  • Baldwin, A. S. Jr., J. C. Azizkhan, D. E. Jensen, A. A. Beg, and J. Coodly 1991. Induction of NF-κB DNA-binding activity during the G0-to-G1 transition in mouse fibroblasts. Mol. Cell. Biol. 11:4943–4951.
  • Bargou, R. C., F. Emmerich, D. Krappmann, K. Bommert, M. Y. Mapara, W. Arnold, H. D. Royer, E. Grienstein, A. Greiner, C. Scheidereit, and J. Dörken 1997. Constitutive nuclear factor-κB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J. Clin. Invest. 100:2961–2969.
  • Bartek, J., J. Bartkova, and J. Lukas 1996. The retinoblastoma protein pathway and the restriction point. Curr. Opin. Cell Biol. 8:805–814.
  • Bash, J., W. X. Zong, and J. Gelinas 1997. c-Rel arrests the proliferation of HeLa cells and affects critical regulators of the G1/S-phase transition. Mol. Cell Biol. 17:6526–6536.
  • Beg, A. A., W. C. Sha, R. T. Bronson, S. Ghosh, and J. Baltimore 1995. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 376:167–170.
  • Beijersbergen, R. L., and J. Bernards 1996. Cell cycle regulation by the retinoblastoma family of growth inhibitory proteins. Biochim. Biophys. Acta 1287:103–120.
  • Chen, Z. J., L. Parent, and J. Maniatis 1996. Site-specific phosphorylation of IκBα by a novel ubiquitination-dependent protein kinase activity. Cell 84:853–862.
  • Cressman, D. E., L. E. Greenbaum, B. A. Haber, and J. Taub 1994. Rapid activation of post-hepatectomy factor/nuclear factor κB in hepatocytes, a primary response in the regenerating liver. J. Biol. Chem. 269:30429–30435.
  • Cressman, D. E., and J. Taub 1994. Physiologic turnover of nuclear factor κB by nuclear proteolysis. J. Biol. Chem. 269:26594–26597.
  • Duckett, C. S., N. D. Perkins, K. Leung, A. B. Agranoff, and J. Nabel 1995. Cytokine induction of nuclear factor κB in cycling and growth-arrested cells. Evidence for cell cycle-independent activation. J. Biol. Chem. 270:18836–18840.
  • Finco, T. S., A. S. Baldwin Jr.. 1993. κB site-dependent induction of gene expression by diverse inducers of nuclear factor κB requires Raf-1. J. Biol. Chem. 268:17676–17679.
  • Finco, T. S., J. K. Westwick, J. L. Norris, A. A. Beg, C. J. Der, A. S. Baldwin Jr.. 1997. Oncogenic Ha-Ras-induced signaling activates NF-κB transcriptional activity, which is required for cellular transformation. J. Biol. Chem. 272:24113–24116.
  • FitzGerald, M. J., E. M. Webber, J. R. Donovan, and J. Fausto 1995. Rapid DNA binding by nuclear factor κB in hepatocytes at the start of liver regeneration. Cell Growth Differ. 6:417–427.
  • Ghoda, L., X. Lin, and J. Greene 1997. The 90-kDa ribosomal S6 kinase (pp90rsk) phosphorylates the N-terminal regulatory domain of IκBα and stimulates its degradation in vitro. J. Biol. Chem. 272:21281–21288.
  • Heldin, C. H. 1995. Dimerization of cell surface receptors in signal transduction. Cell 80:213–223.
  • Helin, K., and J. Harlow 1993. The retinoblastoma protein as a transcriptional repressor. Trends Cell Biol. 3:43–46.
  • Herber, B., M. Truss, M. Beato, and J. Muller 1994. Inducible regulatory elements in the human cyclin D1 promoter. Oncogene 9:2105–2107.
  • Hill, C. S., and J. Treisman 1995. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 80:199–211.
  • Kanno, T., and J. Siebenlist 1996. Activation of nuclear factor-κB via T cell receptor requires a Raf kinase and Ca2+ influx. Functional synergy between Raf and calcineurin. J. Immunol. 157:5277–5283.
  • Krappmann, D., F. G. Wulczyn, and J. Scheidereit 1996. Different mechanisms control signal-induced degradation and basal turnover of the NF-κB inhibitor IκB alpha in vivo. EMBO J. 15:6716–6726.
  • Kundu, M., M. Guermah, R. G. Roeder, S. Amini, and J. Khalili 1997. Interaction between cell cycle regulator, E2F-1, and NF-κB mediates repression of HIV-1 gene transcription. J. Biol. Chem. 272:29468–29474.
  • LaThangue, N. B. 1994. DRTF1/E2F: an expanding family of heterodimeric transcription factors implicated in cell-cycle control. Trends Biochem. Sci. 19:108–114.
  • Lavoie, J. N., G. L’Allemain, A. Brunet, R. Muller, and J. Pouyssegur 1996. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J. Biol. Chem. 271:20608–20616.
  • Lee, F. S., J. Hagler, Z. J. Chen, and J. Maniatis 1997. Activation of the IκBα kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88:213–222.
  • Li, S., and J. Sedivy 1993. Raf-1 protein kinase activates the NF-κB transcription factor by dissociating the cytoplasmic NF-κB-IκB complex. Proc. Natl. Acad. Sci. USA 90:9247–9251.
  • Lukas, J., J. Bartkova, and J. Bartek 1996. Convergence of mitogenic signalling cascades from diverse classes of receptors at the cyclin D–cyclin-dependent kinase–pRb-controlled G1 checkpoint. Mol. Cell. Biol. 16:6917–6925.
  • Lukas, J., J. Bartkova, M. Rohde, M. Strauss, and J. Bartek 1995. Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity. Mol. Cell. Biol. 15:2600–2611.
  • Marshall, C. J. 1996. Ras effectors. Curr. Opin. Cell Biol. 8:197–204.
  • May, M. J., and J. Ghosh 1997. Rel/NF-κB and IκB proteins: an overview. Semin. Cancer Biol. 8:63–73.
  • Mayo, M. W., C. Y. Wang, P. C. Cogswell, K. S. Rogers Graham, S. W. Lowe, C. J. Der, A. S. Baldwin Jr.. 1997. Requirement of NF-κB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 278:1812–1815.
  • Muller, H., J. Lukas, A. Schneider, P. Warthoe, J. Bartek, M. Eilers, and J. Strauss 1994. Cyclin D1 expression is regulated by the retinoblastoma protein. Proc. Natl. Acad. Sci. USA 91:2945–2949.
  • Musgrove, E. A., C. S. L. Lee, M. F. Buckley, and J. Sutherland 1994. Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc. Natl. Acad. Sci. USA 91:8022–8026.
  • Naumann, M., F. G. Wulczyn, and J. Scheidereit 1993. The NF-κB precursor p105 and the proto-oncogene product Bcl-3 are IκB molecules and control nuclear translocation of NF-κB. EMBO J. 12:213–222.
  • Nevins, J. R. 1992. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258:424–429.
  • Peeper, D. S., T. M. Upton, M. H. Ladha, E. Neuman, J. Zalvide, R. Bernards, J. A. DeCaprio, and J. Ewen 1997. Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein. Nature 386:177–181.
  • Perkins, N. D., L. K. Felzien, J. C. Betts, K. Leung, D. H. Beach, and J. Nabel 1997. Regulation of NF-κB by cyclin-dependent kinases associated with the p300 coactivator. Science 275:523–527.
  • Russell, M., C. A. Lange Carter, and J. Johnson 1995. Direct interaction between Ras and the kinase domain of mitogen-activated protein kinase kinase kinase (MEKK1). J. Biol. Chem. 270:11757–11760.
  • Schouten, G. J., A. C. Vertegaal, S. T. Whiteside, A. Israel, M. Toebes, J. C. Dorsman, A. J. van der Eb, and J. Zantema 1997. IκBα is a target for the mitogen-activated 90 kDa ribosomal S6 kinase. EMBO J. 16:3133–3144.
  • Sherr, C. J. 1993. Mammalian G1 cyclins. Cell 73:1059–1065.
  • Sherr, C. J. 1996. Cancer cell cycles. Science 274:1672–1677.
  • Sherr, C. J., and J. Roberts 1995. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9:1149–1163.
  • Siebenlist, U., G. Franzoso, and J. Brown 1994. Structure, regulation and function of NF-κB. Annu. Rev. Cell Biol. 10:405–455.
  • Sovak, M. A., R. E. Bellas, D. W. Kim, G. J. Zanieski, A. E. Rogers, A. M. Traish, and J. Sonenshein 1997. Aberrant nuclear factor-κB/Rel expression and the pathogenesis of breast cancer. J. Clin. Invest. 100:2952–2960.
  • Verma, I. M., J. K. Stevenson, E. M. Schwarz, D. Van Antwerp, and J. Miyamoto 1995. Rel/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev. 9:2723–2735.
  • Watanabe, G., C. Albanese, J. Lee, A. Reutens, G. Vario, B. Henglein, and J. Pestell 1998. Inhibition of cyclin D1 kinase activity is associated with E2F-mediated inhibition of cyclin D1 promoter activity through E2F and Sp1. Mol. Cell. Biol. 18:3212–3222.
  • Weinberg, R. A. 1995. The retinoblastoma protein and cell cycle control. Cell 81:323–330.
  • Wu, M., H. Lee, R. E. Bellas, S. L. Schauer, M. Arsura, D. Katz, M. J. FitzGerald, T. L. Rothstein, D. H. Sherr, and J. Sonenshein 1996. Inhibition of NF-κB/Rel induces apoptosis of murine B cells. EMBO J. 15:4682–4690.
  • Wulczyn, F. G., D. Krappmann, and J. Scheidereit 1996. The NF-κB/Rel and IκB gene families: mediators of immune response and inflammation. J. Mol. Med. 74:749–769.
  • Yamada, Y., I. Kirillova, J. J. Peschon, and J. Fausto 1997. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proc. Natl. Acad. Sci. USA 94:1441–1446.
  • Zhong, H., H. SuYang, H. Erdjument Bromage, P. Tempst, and J. Ghosh 1997. The transcriptional activity of NF-κB is regulated by the IκB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 89:413–424.
  • Zhong, H., R. E. Voll, and J. Ghosh 1998. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1:661–672.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.