18
Views
104
CrossRef citations to date
0
Altmetric
Gene Expression

Polypyrimidine Tract Binding Protein Functions as a Repressor To Regulate Alternative Splicing of α-Actinin Mutally Exclusive Exons

, &
Pages 2699-2711 | Received 16 Nov 1998, Accepted 18 Dec 1998, Published online: 28 Mar 2023

REFERENCES

  • Adams, M. D., D. Z. Rudner, and J. Rio 1996. Biochemistry and regulation of pre-mRNA splicing. Curr. Opin. Cell Biol. 8:331–339.
  • Ashiya, M., and J. Grabowski 1997. A neuron-specific splicing switch mediated by an array of pre-mRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific counterpart. RNA 3:1–20.
  • Black, D. L. 1992. Activation of c-src neuron-specific splicing by an unusual RNA element in vivo and in vitro. Cell 69:795–807.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Byrne, B. J., Y. J. Kaczorowski, M. D. Coutu, and J. Craig 1992. Chicken vinculin and meta-vinculin are derived from a single gene by alternative splicing of a 207 base pair exon unique to meta-vinculin. J. Biol. Chem. 267:12845–12850.
  • Caceres, J. F., S. Stamm, D. M. Helfman, and J. Krainer 1994. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 265:1706–1709.
  • Chan, R. C., and J. Black 1997. The polypyrimidine tract binding protein binds upstream of the neural-specific c-src exon N1 to repress splicing of the intron downstream. Mol. Cell. Biol. 17:4667–4676.
  • Chiara, M. D., L. Palandjian, R. F. Kramer, and J. Reed 1997. Evidence that U5 snRNP recognizes the 3′ splice site for catalytic step II in mammals. EMBO J. 15:4746–4759.
  • Dreyfuss, G., M. J. Matunis, S. Pinol Roma, and J. Burd 1993. hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62:289–321.
  • Eperon, L. P., J. P. Estibeiro, and J. Eperon 1986. The role of nucleotide sequences in splice site selection in eukaryotic pre-messenger RNA. Nature 324:280–282.
  • Fu, X. D. 1993. Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature 365:82–85.
  • Fu, X. D. 1995. The superfamily of arginine/serine-rich splicing factors. RNA 1:663–680.
  • Fu, X.-Y., J. D. Colgan, and J. Manley 1988. Multiple cis-acting sequence elements are required for efficient splicing of simian virus 40 small-t antigen pre-mRNA. Mol. Cell. Biol. 8:3582–3590.
  • Gallego, M. E., L. Balvay, and J. Brody 1992. cis-Acting sequences involved in exon selection in the chicken beta-tropomyosin gene. Mol. Cell. Biol. 12:5415–5425.
  • Gallego, M. E., R. Gattoni, J. Stevenin, J. Marie, and J. Expert-Bezancon 1997. The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the β-tropomyosin alternative exon 6A. EMBO J. 16:1772–1784.
  • Gallego, M. E., and J. Nadal-Ginard 1990. Myosin light-chain 1/3 gene alternative splicing: cis regulation is based upon a hierarchical compatibility between splice sites. Mol. Cell. Biol. 10:2133–2144.
  • Garcia-Blanco, M. A., S. F. Jamison, and J. Sharp 1989. Identification and purification of a 62,000-dalton protein that binds specifically to the polypyrimidine tract of introns. Genes Dev. 3:1874–1886.
  • Ge, H., and J. Manley 1990. A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell 62:25–34.
  • Ghetti, A., S. Pinol Roma, W. M. Michael, C. Morandi, and J. Dreyfuss 1992. hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res. 20:3671–3678.
  • Gooding, C., G. C. Roberts, G. Moreau, B. Nadal Ginard, and J. Smith 1994. Smooth muscle-specific switching of alpha-tropomyosin mutually exclusive exon selection by specific inhibition of the strong default exon. EMBO J. 13:3861–3872.
  • Gooding, C. G., G. C. Roberts, and J. Smith 1998. Role of an inhibitory pyrimidine-element and general pyrimidine-tract binding proteins in regulation of α-tropomyosin alternative splicing. RNA 4:85–100.
  • Gooding, C., and C. W. J. Smith. Unpublished observations.
  • Goux-Pelletan, M., D. Libri, Y. d’Aubenton-Carafa, M. Fiszman, E. Brody, and J. Marie 1990. In vitro splicing of mutually exclusive exons from the chicken β-tropomyosin gene: role of the branch point and very long pyrimidine stretch. EMBO J. 9:241–249.
  • Graham, I. R., M. Hamshere, and J. Eperon 1992. Alternative splicing of a human alpha-tropomyosin muscle-specific exon: identification of determining sequences. Mol. Cell. Biol. 12:3872–3882.
  • Grossman, J. S., M. I. Meyer, Y.-C. Wang, G. J. Mulligan, R. Kobayashi, and J. Helfman 1998. The use of antibodies to the polypyrimidine tract binding protein (PTB) to analyze the protein components that assemble on alternatively spliced pre-mRNAs that use distant branch points. RNA 4:613–625.
  • Guo, W., G. J. Mulligan, S. Wormsley, and J. Helfman 1991. Alternative splicing of beta-tropomyosin pre-mRNA: cis-acting elements and cellular factors that block the use of a skeletal muscle exon in nonmuscle cells. Genes Dev. 5:2096–2107.
  • Hayashi, K., H. Yano, T. Hashida, R. Takeuchi, O. Takeda, K. Asada, E. Takahashi, I. Kato, and J. Sobue 1992. Genomic structure of the human caldesmon gene. Proc. Natl. Acad. Sci. USA 89:12122–12126.
  • Hedjran, F., J. M. Yeakley, G. S. Huh, R. O. Hynes, and J. Rosenfeld 1997. Control of alternative pre-mRNA splicing by distributed pentameric repeats. Proc. Natl. Acad. Sci. USA 94:12343–12347.
  • Helfman, D. M., and J. Ricci 1989. Branch point selection in alternative splicing of tropomyosin pre-messenger RNAs. Nucleic Acids Res. 17:5633–5650.
  • Helfman, D. M., W. M. Ricci, and J. Finn 1988. Alternative splicing of tropomyosin pre-mRNAs in vitro and in vivo. Genes Dev. 2:1627–1638.
  • Helfman, D. M., R. F. Roscigno, G. J. Mulligan, L. A. Finn, and J. Weber 1990. Identification of two distinct intron elements involved in alternative splicing of beta-tropomyosin pre-mRNA. Genes Dev. 4:98–110.
  • Huh, G. S., and J. Hynes 1994. Regulation of alternative pre-mRNA splicing by a novel repeated hexanucleotide element. Genes Dev. 8:1561–1574.
  • Hunt, S. L., J. J. Hsuan, N. Totty, and R. J. Jackson. unr, a cellular cytoplasmic RNA-binding protein with five cold shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes Dev., in press.
  • Kaminski, A., S. L. Hunt, J. G. Patton, and J. Jackson 1995. Direct evidence that polypyrimidine tract binding protein (PTB) is essential for internal initiation of translation of encephalomyocarditis virus RNA. RNA 1:924–938.
  • Kanopka, A., O. Muhlemann, and J. Akusjarvi 1996. Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature 381:535–538.
  • Krainer, A. R., G. C. Conway, and J. Kozak 1990. The essential pre-mRNA splicing factor SF2 influences 5′ splice site selection by activating proximal sites. Cell 62:35–42.
  • Libri, D., L. Balvay, and J. Fiszman 1992. In vivo splicing of the beta tropomyosin pre-mRNA: a role for branch point and donor site competition. Mol. Cell. Biol. 12:3204–3215.
  • Libri, D., A. Piseri, and J. Fiszman 1991. Tissue-specific splicing in vivo of the beta-tropomyosin gene: dependence on an RNA secondary structure. Science 252:1842–1845.
  • Lim, L. P., and J. Sharp 1998. Alternative splicing of the fibronectin EIIIB exon depends on specific TGCATG repeats. Mol. Cell. Biol. 18:3900–3906.
  • Lin, C. H., and J. Patton 1995. Regulation of alternative 3′ splice site selection by constitutive splicing factors. RNA 1:234–245.
  • Manley, J. L., and J. Tacke 1996. SR proteins and splicing control. Genes Dev. 10:1569–1579.
  • Martinez, R., B. Mathey Prevot, A. Bernards, and J. Baltimore 1987. Neuronal pp60c-src contains a six-amino acid insertion relative to its non-neuronal counterpart. Science 237:411–415.
  • Mayeda, A., and J. Krainer 1992. Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 68:365–375.
  • McKeown, M. 1992. Sex differentiation: the role of alternative splicing. Curr. Opin. Genet. Dev. 2:299–303.
  • Millake, D. B., A. D. Blanchard, B. Patel, and J. Critchley 1989. The cDNA sequence of a human placental alpha-actinin. Nucleic Acids Res. 17:6725.
  • Min, H., R. C. Chan, and J. Black 1995. The generally expressed hnRNP F is involved in a neural-specific pre-mRNA splicing event. Genes Dev. 9:2659–2671.
  • Mullen, M. P., C. W. J. Smith, J. G. Patton, and J. Nadal Ginard 1991. Alpha-tropomyosin mutually exclusive exon selection: competition between branchpoint/polypyrimidine tracts determines default exon choice. Genes Dev. 5:642–655.
  • Mulligan, G. J., W. Guo, S. Wormsley, and J. Helfman 1992. Polypyrimidine tract binding protein interacts with sequences involved in alternative splicing of beta-tropomyosin pre-mRNA. J. Biol. Chem. 267:25480–25487.
  • Norton, P. A. 1994. Polypyrimidine tract sequences direct selection of alternative branch sites and influence protein binding. Nucleic Acids Res. 22:3854–3860.
  • Patton, J. G., S. A. Mayer, P. Tempst, and J. Nadal Ginard 1991. Characterization and molecular cloning of polypyrimidine tract-binding protein: a component of a complex necessary for pre-mRNA splicing. Genes Dev. 5:1237–1251.
  • Patton, J. G., E. B. Porro, J. Galceran, P. Tempst, and J. Nadal Ginard 1993. Cloning and characterization of PSF, a novel pre-mRNA splicing factor. Genes Dev. 7:393–406.
  • Perez, I., C.-H. Lin, J. G. McAfee, and J. Patton 1997. Mutation of PTB binding sites causes misregulation of alternative 3′ splice site selection in vivo. RNA 3:764–778.
  • Periasamy, M., E. E. Strehler, L. I. Garfinkel, R. M. Gubits, N. Ruiz Opazo, and J. Nadal Ginard 1984. Fast skeletal muscle myosin light chains 1 and 3 are produced from a single gene by a combined process of differential RNA transcription and splicing. J. Biol. Chem. 259:13595–13604.
  • Reed, R. 1989. The organization of 3′ splice-site sequences in mammalian introns. Genes Dev. 3:2113–2123.
  • Reed, R., and J. Maniatis 1988. The role of the mammalian branchpoint sequence in pre-mRNA splicing. Genes Dev. 2:1268–1276.
  • Roberts, G. C., C. Gooding, and J. Smith 1996. Smooth muscle alternative splicing induced in fibroblasts by heterologous expression of a regulatory gene. EMBO J. 15:6301–6310.
  • Ruskin, B., J. M. Greene, and J. Green 1985. Cryptic branch point activation allows accurate in vitro splicing of human beta-globin intron mutants. Cell 41:833–844.
  • Sambrook, J., E. F. Fritsch, T. Maniatis 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sharp, P. A. 1994. Split genes and RNA splicing. Cell 77:805–815.
  • Singh, R., J. Valcarcel, and J. Green 1995. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 268:1173–1176.
  • Smith, C. W. J., T. T. Chu, and J. Nadal Ginard 1993. Scanning and competition between AGs are involved in 3′ splice site selection in mammalian introns. Mol. Cell. Biol. 13:4939–4952.
  • Smith, C. W. J., and J. Nadal Ginard 1989. Mutually exclusive splicing of alpha-tropomyosin exons enforced by an unusual lariat branch point location: implications for constitutive splicing. Cell 56:749–758.
  • Smith, C. W. J., J. G. Patton, and J. Nadal Ginard 1989. Alternative splicing in the control of gene expression. Annu. Rev. Genet. 23:527–577.
  • Smith, C. W. J., E. B. Porro, J. G. Patton, and J. Nadal Ginard 1989. Scanning from an independently specified branch point defines the 3′ splice site of mammalian introns. Nature 342:243–247.
  • Strehler, E. E., M. Periasamy, M.-A. Strehler-Page, and J. Nadal-Ginard 1985. Myosin light-chain 1 and 3 gene has two structurally distinct and differentially regulated promoters evolving at different rates. Mol. Cell. Biol. 5:3168–3182.
  • Tian, M., and J. Maniatis 1993. A splicing enhancer complex controls alternative splicing of doublesex pre-mRNA. Cell 74:105–114.
  • Valcarcel, J., and J. Gebauer 1997. Post-transcriptional regulation: the dawn of PTB. Curr. Biol. 7:R705–R708.
  • Valcarcel, J., and J. Green 1996. The SR protein family: pleiotropic functions in pre-mRNA splicing. Trends Biochem. Sci. 21:296–301.
  • Valcarcel, J., R. Singh, M. R. Green 1995. Mechanisms of regulated pre-mRNA splicing, p. 97–112. In A. I. Lamond (ed.), Pre-mRNA processing. R. G. Landes Company, New York, N.Y.
  • Valcarcel, J., R. Singh, P. D. Zamore, and J. Green 1993. The protein Sex-lethal antagonizes the splicing factor U2AF to regulate alternative splicing of transformer pre-mRNA. Nature 362:171–175.
  • Waites, G. T., I. R. Graham, P. Jackson, D. B. Millake, B. Patel, A. D. Blanchard, P. A. Weller, I. C. Eperon, and J. Critchley 1992. Mutually exclusive splicing of calcium-binding domain exons in chick alpha-actinin. J. Biol. Chem. 267:6263–6271.
  • Wang, Z., and J. Grabowski 1996. Cell- and stage-specific splicing events resolved in specialised neurons of the rat cerebellum. RNA 2:1241–1253.
  • Watakabe, A., K. Tanaka, and J. Shimura 1993. The role of exon sequences in splice site selection. Genes Dev. 7:407–418.
  • Wieczorek, D. F., C. W. J. Smith, and J. Nadal Ginard 1988. The rat alpha-tropomyosin gene generates a minimum of six different mRNAs coding for striated, smooth, and nonmuscle isoforms by alternative splicing. Mol. Cell. Biol. 8:679–694.
  • Wierenga, B., E. Hofer, and J. Weissmann 1984. A minimal intron length but no specific internal sequence is required for splicing the large rabbit β-globin intron. Cell 37:915–925.
  • Zahler, A. M., W. S. Lane, J. A. Stolk, and J. Roth 1992. SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev. 6:837–847.
  • Zahler, A. M., K. M. Neugebauer, W. S. Lane, and J. Roth 1993. Distinct functions of SR proteins in alternative pre-mRNA splicing. Science 260:219–222.
  • Zahler, A. M., and J. Roth 1995. Distinct functions of SR proteins in recruitment of U1 small nuclear ribonucleoprotein to alternative 5′ splice sites. Proc. Natl. Acad. Sci. USA 92:2642–2646.
  • Zamore, P. D., J. G. Patton, and J. Green 1992. Cloning and domain structure of the mammalian splicing factor U2AF. Nature 355:609–614.
  • Zhuang, Y., H. Leung, and J. Weiner 1987. The natural 5′ splice site of simian virus 40 large T antigen can be improved by increasing the base complementarity to U1 RNA. Mol. Cell. Biol. 7:3018–3020.
  • Zhuang, Y. A., A. M. Goldstein, and J. Weiner 1989. UACUAAC is the preferred branch site for mammalian mRNA splicing. Proc. Natl. Acad. Sci. USA 86:2752–2756.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.