80
Views
139
CrossRef citations to date
0
Altmetric
Cell Growth and Development

CD5 Negatively Regulates the T-Cell Antigen Receptor Signal Transduction Pathway: Involvement of SH2-Containing Phosphotyrosine Phosphatase SHP-1

, , , , &
Pages 2903-2912 | Received 31 Jul 1998, Accepted 14 Jan 1999, Published online: 28 Mar 2023

REFERENCES

  • Alberola-Ila, J., L. Places, F. Lozano, and J. Vives 1993. Association of an activation inducible serine kinase activity with CD5. J. Immunol. 151:4423–4430.
  • Aruffo, A., M. A. Bowen, D. D. Patel, B. F. Haynes, G. C. Starling, J. A. Gebe, and J. Bajorath 1997. CD6-ligand interactions: a paradigm for SRCR domain function? Immunol. Today 18:498–504.
  • Biaconte, L., M. A. Bowen, A. Lim, A. Aruffo, G. Andres, and J. Stamenkovic 1996. Identification of a novel inducible cell-surface ligand of CD5 on activated lymphocytes. J. Exp. Med. 184:811–819.
  • Bikah, G., J. Carey, J. R. Ciallella, A. Tarakhovsky, and J. Bondada 1996. CD5-mediated negative regulation of antigen receptor-induced growth signal in B-1 cells. Science 274:1906–1909.
  • Bowen, M. A., G. S. Whitney, M. Neubauer, G. C. Starling, D. Palmer, J. Zhang, N. J. Nowak, T. B. Shows, and J. Aruffo 1996. Structural and chromosomal location of the human CD6 gene: detection of five human isoforms. J. Immunol. 158:1149–1156.
  • Burgess, K. E., M. Yamamoto, K. V. S. Prasad, and J. Rudd 1992. CD5 acts as a tyrosine kinase substrate within a receptor complex comprising T-cell receptor ζ chain/CD3 and protein-tyrosine kinases p56lck and p59fyn. Proc. Natl. Acad. Sci. USA 89:9311–9315.
  • Casali, P., S. E. Burastero, M. Nakamura, G. Inghirami, and J. Notkins 1987. Human lymphocytes making rheumatoid factor and antibody to ssDNA belong to the Leu-1+B cell subset. Science 236:77–81.
  • Cerutti, A., L. Trentin, R. Zambello, R. Sancetta, A. Milani, C. Tassinari, F. Adami, C. Agostini, and J. Semenzato 1996. The CD5/CD72 receptor system is coexpressed with several functionally relevant counterstructures on human B cells and delivers a critical signaling activity. J. Immunol. 157:1854–1862.
  • Ceuppens, J. L., and J. Baroja 1986. Monoclonal antibodies to the CD5 antigen can provide the necessary second signal for activation of isolated resting T cells by solid-phase bound OKT3. J. Immunol. 137:1816–1821.
  • Cyster, J. G., and J. Goodenow 1995. Protein tyrosine phosphatase 1C negatively regulates antigen receptor signaling in B lymphocytes and determines thresholds for negative selection. Immunity 2:13–24.
  • Cornall, R. J., J. C. Cyster, M. L. Hibbs, A. R. Dunn, K. L. Otipoby, E. A. Clark, and J. Goodenow 1998. Polygenic autoimmune traits: Lyn, CD22, and SHP-1 are limiting elements of a biochemical pathway regulating BCR signaling and selection. Immunity 8:497–508.
  • D’Ambrosio, D., K. L. Hippen, S. A. Minskoff, I. Mellman, G. Pani, K. A. Siminovitch, and J. Cambier 1995. Recruitment and activation of PTP1C in negative regulation of antigen receptor signaling by Fc gammaRIIB1. Science 268:293–297.
  • Davies, A. A., S. C. Ley, and J. Crumpton 1992. CD5 is phosphorylated on tyrosine after stimulation of the T-cell antigen receptor complex. Proc. Natl. Acad. Sci. USA 89:6368–6372.
  • Dennehy, K. M., R. Broszeit, D. Garnett, G. A. Durrheim, L. L. Spruyt, and J. Beyers 1997. Thymocyte activation induces the association of phosphatidylinositol 3-kinase and pp120 with CD5. Eur. J. Immunol. 27:679–686.
  • Doody, G. M., L. B. Justement, C. C. Delibrias, R. J. Matthews, J. Lin, M. L. Thomas, and J. Fearon 1995. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269:242–244.
  • Huang, H. J. S., N. H. Jones, J. L. Strominger, and J. Herzenberg 1987. Molecular cloning of Ly-1, a membrane glycoprotein of mouse T lymphocytes and a subset of B cells: molecular homology to the human counterpart Leu-1/T1 (CD5). Proc. Natl. Acad. Sci. USA 84:204–208.
  • Jones, N. H., M. L. Clabby, D. P. Dialynas, H. J. S. Huang, L. A. Herzenberg, and J. Strominger 1986. Isolation of complementary DNA clones encoding the human lymphocyte glycoprotein T1/Leu-1. Nature 323:346–349.
  • June, C. H., P. S. Ravinovitch, and J. Ledbetter 1987. CD5 antibodies increase intracellular ionized calcium concentration in T cells. J. Immunol. 138:2782–2792.
  • Kanner, S. B., N. K. Damle, J. Blake, A. A. Aruffo, and J. Ledbetter 1992. CD2/LFA3 ligation induces phospholipase-Cγ1 tyrosine phosphorylation and regulates CD3 signaling. J. Immunol. 148:2023–2029.
  • Klingmuller, U., U. Lorenz, L. C. Cantley, B. G. Neel, and J. Lodish 1995. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of Jak2 and termination of proliferative signals. Cell 80:729–738.
  • Kodama, T., L. Freeman, J. Rohrer, J. Zabrecky, P. Matsudaira, and J. Krieger 1990. Type I macrophage scavenger receptor contains alpha helical and collagen-like coiled coils. Nature 343:531–535.
  • Kozlowski, M., I. Mlinaric-Rascan, G. S. Feng, R. Shen, T. Pawson, and J. Siminovitch 1993. Expression and catalytic activity of the tyrosine phosphatase PTP1C is severely impaired in motheaten and viable motheaten mice. J. Exp. Med. 178:2157–2163.
  • Lanier, L. L. 1998. Natural killer receptors. Annu. Rev. Immunol. 16:359–393.
  • Lankester, A. C., G. M. van Schijndel, J. L. Cordell, C. J. van Noesel, and J. van Lier 1994. CD5 is associated with the human B cell antigen receptor complex. Eur. J. Immunol. 24:812–816.
  • Ledbetter, J. A., C. H. June, L. S. Grosmaire, and J. Rabinovitch 1987. Crosslinking of surface antigens causes mobilization of intracellular ionized calcium in T lymphocytes. Proc. Natl. Acad. Sci. USA 84:1384–1388.
  • Ledbetter, J. A., C. H. June, P. J. Martin, C. E. Spooner, J. A. Hansen, and J. Meier 1986. Valency of CD3 binding and internalization of the CD3 cell-surface complex control T cell responses to second signals: distinction between effects on protein kinase C, cytoplasmic free calcium, and proliferation. J. Immunol. 136:3945–3952.
  • Lorenz, U., K. S. Ravichandran, S. F. Burakoff, and J. Neel 1996. Lack of SHPTP1 results in src-family kinase hyperactivation and thymocyte hyperresponsiveness. Proc. Natl. Acad. Sci. USA 93:9624–9629.
  • Luo, W., H. van de Velde, I. von Hoegen, J. R. Parnes, and J. Thielemans 1992. Ly-1 (CD5), a membrane glycoprotein of mouse T lymphocytes and a subset of B cells, is a natural ligand of the B cell surface protein Lyb-2 (CD72). J. Immunol. 148:1630–1634.
  • Migone, T. S., N. A. Cacalano, N. Taylor, T. Yi, T. A. Waldmann, and J. Johnston 1998. Recruitment of SH2-containing protein tyrosine phosphatase SHP-1 to the interleukin 2 receptor; loss of SHP-1 expression in human T-lymphotropic virus type I-transformed cells. Proc. Natl. Acad. Sci. USA 95:3845–3850.
  • Neel, B. G. 1997. Role of phosphatases in lymphocyte activation. Curr. Opin. Immunol. 9:405–420.
  • O’Keefe, T. L., G. T. Williams, S. L. Davies, and J. Neuberger 1996. Hyperresponsive B cells in CD22-deficient mice. Science 275:798–801.
  • Osman, N., S. C. Ley, and J. Crumpton 1992. Evidence for an association between the T cell receptor/CD3 antigen complex and the CD5 antigen in human T lymphocytes. Eur. J. Immunol. 22:2995–3000.
  • Otipoby, K. L., K. B. Andersson, K. E. Draves, S. J. Klaus, A. G. Farr, J. D. Kenner, R. M. Perlmutter, C.-L. Law, and J. Clark 1996. CD22 regulates thymus-independent responses and the lifespan of B cells. Nature 384:634–637.
  • Pani, G., K.-D. Fischer, I. Mlinaric-Rascan, and J. Siminovitch 1996. Signaling capacity of the T cell antigen receptor is negatively regulated by the PTP1C tyrosine phosphatase. J. Exp. Med. 184:839–852.
  • Plas, D. R., R. Johnson, J. T. Pingel, R. J. Matthews, M. Dalton, G. Roy, A. C. Chan, and J. Thomas 1996. Direct regulation of ZAP-70 by SHP-1 in T cell antigen receptor signaling. Science 272:1173–1176.
  • Plater-Zyberk, C., P. C. Taylor, M. G. Blaylock, and J. Maini 1994. Anti-CD5 therapy decreases severity of established disease in collagen type II-induced arthritis in DBA/1 mice. Clin. Exp. Immunol. 98:442–447.
  • Raab, M., M. Yamamoto, and J. Rudd 1994. The T-cell antigen CD5 acts as a receptor and substrate for the protein-tyrosine kinase p56lck. Mol. Cell. Biol. 14:2862–2870.
  • Rincon, M., M. Cebrian, F. Sanchez-Madrid, and J. Lopez-Botet 1989. Induction of T cell function via the gp33/27 activation inducer molecule (AIM) requires co-expression of the CD3/TcR complex. Eur. J. Immunol. 19:959–962.
  • Sato, S., A. S. Miller, M. Inaoki, C. B. Bock, P. J. Jansen, M. L. Tang, and J. Tedder 1996. CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling on CD22-deficient mice. Immunity 5:551–562.
  • Secrist, J. P., L. A. Burns, L. Karnitz, G. A. Koretzky, and J. Abraham 1993. Stimulatory effect of the protein tyrosine phosphatase inhibitor, pervanadate, on T-cell activation events. J. Biol. Chem. 268:5886–5893.
  • Shultz, L. D., P. A. Schweitzer, T. V. Rajan, T. Yi, J. N. Ihle, R. J. Matthews, M. L. Thomas, and J. Beier 1993. Mutations at the murine motheaten locus are within the haematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 73:1445–1454.
  • Spertini, F., W. Stohl, N. Ramesh, C. Moody, and J. Geha 1991. Induction of human T cell proliferation by a monoclonal antibody to CD5. J. Immunol. 146:47–52.
  • Starling, G. C., G. S. Whitney, A. W. Siadak, M. C. Llewellyn, M. A. Bowen, A. G. Farr, and J. Aruffo 1996. Characterization of mouse CD6 with novel monoclonal antibodies which enhance the allogeneic mixed leukocyte reaction. Eur. J. Immunol. 26:738–746.
  • Sun, D., K. Branum, and J. Sun 1992. Prevention of experimental autoimmune encephalomyelitis in Lewis rats by treatment with an anti-rat CD5 antibody (OX19). Cell. Immunol. 145:263–271.
  • Tarakhovsky, A., S. B. Kanner, J. Hombach, J. A. Ledbetter, W. Muller, N. Killeen, and J. Rajewsky 1995. A role for CD5 in TcR-mediated signal transduction and thymocyte selection. Science 269:535–537.
  • Timms, J. F., D. Carlberg, H. Gu, H. Chen, S. Kamatkar, M. J. Nadler, L. R. Rohrscheider, and J. Neel 1998. Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages. Mol. Cell. Biol. 18:3838–3850.
  • Tsui, H. W., K. A. Siminovitch, L. de Souza, and J. Tsui 1993. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat. Genet. 4:124–129.
  • Tuskano, J., P. Engel, T. F. Tedder, and J. Kehrl 1996. Engagement of the adhesion receptor CD22 triggers a potent stimulatory signal for B cells and blocking CD22/CD22L interactions impairs T-cell proliferation. Blood 87:4723–4730.
  • Tuskano, J. M., P. Engel, T. F. Tedder, A. Argarwa, and J. Kehrl 1996. Involvement of p72 syk kinase, p53/56 lyn kinase and phosphatidyl inositol-3 kinase in signal transduction via the human B lymphocyte antigen CD22. Eur. J. Immunol. 26:1246–1252.
  • Unkeless, J. C., and J. Lin 1997. Inhibitory receptors, ITIM sequences and phosphatases. Curr. Top. Immunol. 9:338–343.
  • Van de Velde, H., I. von Hoegen, W. Luo, J. R. Parnes, and J. Thielemans 1991. The B-cell surface protein CD72/Lyb-2 is the ligand for CD5. Nature 351:662–665.
  • Yi, T., A. L. Mui, G. Krystal, and J. Ihle 1993. Hemopoietic cell phosphatase associates with the interleukin (IL-3) receptor B chain and down-regulates IL-3-induced tyrosine phosphorylation and mitogenesis. Mol. Cell. Biol. 13:7577–7586.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.