43
Views
173
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

A Genetic Screen for Ribosomal DNA Silencing Defects Identifies Multiple DNA Replication and Chromatin-Modulating Factors

, &
Pages 3184-3197 | Received 20 Oct 1998, Accepted 21 Dec 1998, Published online: 28 Mar 2023

REFERENCES

  • Adams, A. K., and J. Holm 1996. Specific DNA replication mutations affect telomere length in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:4614–4620.
  • Aparicio, O. M., B. L. Billington, and J. Gottschling 1991. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66:1279–1287.
  • Araki, H., R. K. Hamatake, A. Morrison, A. L. Johnson, L. H. Johnston, and J. Sugino 1991. Cloning DPB3, the gene encoding the third subunit of DNA polymerase II of Saccharomyces cerevisiae. Nucleic Acids Res. 19:4867–4872.
  • Austriaco, N. R. Jr., and J. Guarente 1997. Changes in telomere length cause reciprocal changes in the lifespan of mother cells in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94:9768–9772.
  • Baudin, A., O. Ozier-Kalogeropoulos, A. Denouel, F. Lacroute, and J. Cullin 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21:3329–3330.
  • Boeke, J. D., D. J. Garfinkel, C. A. Styles, and J. Fink 1985. Ty elements transpose through an RNA intermediate. Cell 40:491–500.
  • Bourns, B. D., M. K. Alexander, A. M. Smith, and J. Zakian 1998. Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo. Mol. Cell. Biol. 18:5600–5608.
  • Brachmann, C. B., A. Davies, G. J. Cost, E. Caputo, J. Li, P. Hieter, and J. Boeke 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132.
  • Brachmann, C. B., J. M. Sherman, S. E. Devine, E. E. Cameron, L. Pillus, and J. Boeke 1995. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9:2888–2902.
  • Braunstein, M., R. E. Sobel, C. D. Allis, B. M. Turner, and J. Broach 1996. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell. Biol. 16:4349–4356.
  • Bryk, M., M. Banerjee, M. Murphy, K. E. Knudsen, D. J. Garfinkel, and J. Curcio 1997. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 11:255–269.
  • Buck, S. W., and J. Shore 1995. Action of a RAP1 carboxy-terminal silencing domain reveals an underlying competition between HMR and telomeres in yeast. Genes Dev. 9:370–384.
  • Burns, N., B. Grimwade, P. B. Ross-Macdonald, E.-Y. Choi, K. Finberg, G. S. Roeder, and J. Snyder 1994. Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev. 8:1087–1105.
  • Cavalli, G., D. Bachmann, and J. Thoma 1996. Inactivation of topoisomerases affects transcription-dependent chromatin transitions in rDNA but not in a gene transcribed by RNA polymerase II. EMBO J. 15:590–597.
  • Chi, M.-H., and J. Shore 1996. SUM1-1, a dominant suppressor of SIR mutations in Saccharomyces cerevisiae, increases transcriptional silencing at telomeres and HM mating-type loci and decreases chromosome stability. Mol. Cell. Biol. 16:4281–4294.
  • Chien, C. T., S. Buck, R. Sternglanz, and J. Shore 1993. Targeting of SIR1 protein establishes transcriptional silencing at HM loci and telomeres in yeast. Cell 75:531–541.
  • Christianson, T. W., R. S. Sikorski, M. Dante, J. H. Shero, and J. Hieter 1992. Multifunctional yeast high-copy number shuttle vectors. Gene 110:119–122.
  • Christman, M. F., F. S. Dietrich, and J. Fink 1988. Mitotic recombination in the rDNA of S. cerevisiae is suppressed by the combined action of DNA topoisomerases I and II. Cell 55:413–425.
  • Cockell, M., M. Gotta, F. Palladino, S. G. Martin, and S. M. Gasser. Targeting limiting pools of Sir proteins to sites of action: a general mechanism for regulated repression. Cold Spring Harbor Symp. Quant. Biol., in press.
  • Conrad-Webb, H., and J. Butow 1995. A polymerase switch in the synthesis of rRNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:2420–2428.
  • Cost, G. J., and J. Boeke 1996. A useful colony colour phenotype associated with the yeast selectable/counterselectable marker MET15. Yeast 12:939–941.
  • Dammann, R., R. Lucchini, T. Koller, and J. Sogo 1993. Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae. Nucleic Acids Res. 21:2331–2338.
  • De Rubertis, F., D. Kadosh, S. Henchoz, D. Pauli, G. Reuter, K. Struhl, and J. Spierer 1996. The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature 384:589–591.
  • Di Fiorre, P. P., P. G. Pelicci, and J. Sorkin 1997. EH: a novel protein-protein interaction domain potentially involved in intracellular sorting. Trends Biochem. Sci. 22:411–413.
  • Dillin, A., and J. Rine 1997. Separable functions of ORC5 in replication initiation and silencing in Saccharomyces cerevisiae. Genetics 147:1053–1062.
  • Edmondson, D. G., M. M. Smith, and J. Roth 1996. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev. 10:1247–1259.
  • Enomoto, S., and J. Berman 1998. Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. Genes Dev. 12:219–232.
  • Enomoto, S., P. D. McCune-Zierath, M. Gerami-Nejad, M. A. Sanders, and J. Berman 1997. RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo. Genes Dev. 11:358–370.
  • Foss, M., F. J. McNally, P. Laurenson, and J. Rine 1993. Origin recognition complex (ORC) in transcriptional silencing and DNA replication in S. cerevisiae. Science 262:1838–1844.
  • Fox, C. A., A. E. Ehrenhofer-Murray, S. Loo, and J. Rine 1997. The origin recognition complex, SIR1, and the S phase requirement for silencing. Science 276:1547–1551.
  • Fritze, C. E., K. Verschueren, R. Strich, and J. Esposito 1997. Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA. EMBO J. 16:6495–6509.
  • Gotta, M., S. Strahl-Bolsinger, H. Renauld, T. Laroche, B. K. Kennedy, M. Grunstein, and J. Gasser 1997. Localization of Sir2p: the nucleolus as a compartment for silent information regulators. EMBO J. 16:3243–3255.
  • Gottlieb, S., and J. Esposito 1989. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56:771–776.
  • Gottschling, D. E., O. M. Aparicio, B. L. Billington, and J. Zakian 1990. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63:751–762.
  • Grunstein, M. 1997. Molecular model for telomeric heterochromatin in yeast. Curr. Opin. Cell Biol. 9:383–387.
  • Gu, W., and J. Roeder 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606.
  • Hampsey, M. Personal communication.
  • Hardy, C. F., L. Sussel, and J. Shore 1992. A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev. 6:801–814.
  • Huang, L., W. Zhang, and J. Roth 1997. Amino termini of histones H3 and H4 are required for a1-α2 repression in yeast. Mol. Cell. Biol. 17:6555–6562.
  • Kadosh, D., and J. Struhl 1998. Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev. 12:797–805.
  • Kadosh, D., and J. Struhl 1997. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89:365–371.
  • Kamakaka, R. T., and J. Rine 1998. Sir- and silencer independent disruption of silencing in Saccharomyces by Sas10p. Genetics 149:903–914.
  • Kasten, M. M., S. Dorland, and J. Stillman 1997. A large protein complex containing the yeast Sin3p and Rpd3 transcriptional regulators. Mol. Cell. Biol. 17:4852–4858.
  • Kaufman, P. D., J. L. Cohen, and J. Osley 1998. Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I. Mol. Cell. Biol. 18:4793–4806.
  • Kaufman, P. D., R. Kobayashi, and J. Stillman 1997. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev. 11:345–357.
  • Kennedy, B. K., M. Gotta, D. A. Sinclair, K. Mills, D. S. McNabb, M. Murthy, S. M. Pak, T. Laroche, S. M. Gasser, and J. Guarente 1997. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89:381–391.
  • Kennedy, B. K., J. Nicanor, R. Austriaco, J. Zhang, and J. Guarente 1995. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80:485–496.
  • Klar, A. J., S. N. Kakar, J. M. Ivy, J. B. Hicks, G. P. Livi, and J. Miglio 1985. SUM1, an apparent positive regulator of the cryptic mating-type loci in Saccharomyces cerevisiae. Genetics 111:745–758.
  • Laurenson, P., and J. Rine 1991. SUM1-1: a suppressor of silencing defects in Saccharomyces cerevisiae. Genetics 129:685–696.
  • Loo, S., and J. Rine 1995. Silencing and heritable domains of gene expression. Annu. Rev. Biol. Dev. 11:519–548.
  • Lorenz, M. C., R. S. Muir, E. Lim, J. McElver, S. C. Weber, and J. Heitman 1995. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene 158:113–117.
  • Micklem, G., A. Rowley, J. Harwood, K. Nasmyth, and J. Diffley 1993. Yeast origin recognition complex is involved in DNA replication and transcriptional silencing. Nature 366:87–89.
  • Miller, A. M., and J. Nasmyth 1984. Role of DNA replication in the repression of silent mating type loci in yeast. Nature 312:247–251.
  • Monson, E. K., D. deBruin, and J. Zakian 1997. The yeast Cac1 protein is required for the stable inheritance of transcriptionally repressed chromatin at telomeres. Proc. Natl. Acad. Sci. USA 94:13081–13086.
  • Mullen, J. R., P. S. Kayne, R. P. Moerschell, S. Tsunasawa, M. Gribskov, M. Colavito-Shepanski, M. Grunstein, F. Sherman, and J. Sternglanz 1989. Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast. EMBO J. 8:2067–2075.
  • Munshi, N., M. Merika, J. Yie, K. Senger, G. Chen, and J. Thanos 1998. Acetylation of HMG I(Y) by CBP turns off IFNB expression by disrupting the enhanceosome. Mol. Cell 2:457–467.
  • Navas, T. A., Z. Zhou, and J. Elledge 1995. DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell 80:29–39.
  • Ono, B., N. Ishii, S. Fujino, and J. Aoyama 1991. Role of hydrosulfide ions in methylmercury resistance in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 57:3183–3186.
  • Petes, T. D., and J. Botstein 1977. Simple Mendelian inheritance of the reiterated ribosomal DNA of yeast. Proc. Natl. Acad. Sci. USA 74:5091–5095.
  • Philippsen, P., M. Thomas, R. A. Kramer, and J. Davis 1978. Unique arrangement of coding sequences for 5S, 5.8S, 18S, and 25S ribosomal RNA in Saccharomyces cerevisiae as determined by R-loop and hybridization analysis. J. Mol. Biol. 123:387–404.
  • Pillus, L., and J. Rine 1989. Epigenetic inheritance of transcriptional states in S. cerevisiae. Cell 59:637–647.
  • Qian, Z., H. Huang, J. Y. Hong, C. L. Burck, S. D. Johnston, J. Berman, A. Carol, and J. Liebman 1998. Yeast Ty1 retrotransposition is stimulated by a synergistic interaction between mutations in chromatin assembly factor I and histone regulatory proteins. Mol. Cell. Biol. 18:4783–4792.
  • Rose, M. D., F. Winston, P. Heiter 1990. Methods in yeast genetics. A laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Rundlett, S. E., A. A. Carmen, R. Kobayashi, S. Bavykin, B. M. Turner, and J. Grunstein 1996. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl. Acad. Sci. USA 93:14503–14508.
  • Rundlett, S. E., A. A. Carmen, N. Suka, B. M. Turner, and J. Grunstein 1998. Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392:831–835.
  • Sakaguchi, K., J. E. Herrera, S. I. Saito, T. Miki, M. Bustin, A. Vassilev, C. W. Anderson, and J. Appella 1998. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12:2831–2841.
  • Sherwood, P. W., S. V. Tsang, and J. Osley 1993. Characterization of HIR1 and HIR2, two genes required for regulation of histone gene transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:28–38.
  • Shore, D. Personal communication.
  • Skryabin, K. G., M. A. Eldarov, V. L. Larionov, A. A. Bayev, J. Klootwijk, V. C. H. F. de Regt, G. M. Veldman, R. J. Planta, O. I. Georgiev, and J. Hadjiolov 1984. Structure and function of the nontranscribed spacer regions of yeast rDNA. Nucleic Acids Res. 12:2955–2968.
  • Smeal, T., J. Claus, B. Kennedy, F. Cole, and J. Guarente 1996. Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 84:633–642.
  • Smith, J. S., and J. Boeke 1997. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev. 11:241–254.
  • Smith, J. S., C. B. Brachmann, L. Pillus, and J. Boeke 1998. Distribution of a limited Sir2 protein pool regulates the strength of yeast rDNA silencing and is modulated by Sir4p. Genetics 149:1205–1219.
  • Smith, S., and J. Stillman 1989. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication. Cell 58:15–25.
  • Spector, M. S., A. Raff, H. DeSilva, K. Lee, and J. Osley 1997. Hir1p and Hir2p function as transcriptional corepressors to regulate histone gene transcription in the Saccharomyces cerevisiae cell cycle. Mol. Cell. Biol. 17:545–552.
  • Szostak, J. W., and J. Wu 1979. Insertion of a genetic marker into the ribosomal DNA of yeast. Plasmid 2:536–554.
  • Tang, H. Y., and J. Cai 1996. The EH-domain-containing protein Pan1 is required for normal organization of the actin cytoskeleton in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:4897–4914.
  • Triolo, T., and J. Sternglanz 1996. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature 381:251–253.
  • Vannier, D., D. Balderes, and J. Shore 1996. Evidence that the transcriptional regulators SIN3 and RPD3, and a novel gene (SDS3) with similar functions, are involved in transcriptional silencing in S. cerevisiae. Genetics 144:1343–1353.
  • Vidal, M., and J. Gaber 1991. RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:6317–6327.
  • Wach, A., A. Brachat, R. Pohlmann, and J. Philippsen 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808.
  • Wang, Z., X. Wu, and J. Friedberg 1993. DNA repair synthesis during base excision repair in vitro is catalyzed by DNA polymerase epsilon and is influenced by DNA polymerases alpha and delta in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:1051–1058.
  • Wellinger, R. J., A. J. Wolf, and J. Zakian 1993. Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase. Cell 72:51–60.
  • Wiley, E. A., and J. Zakian 1995. Extra telomeres, but not internal tracts of telomeric DNA, reduce transcriptional repression at Saccharomyces telomeres. Genetics 139:67–79.
  • Wotton, D., and J. Shore 1997. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11:748–760.
  • Zhang, Y., Z. W. Sun, R. Iratni, H. Erdjument-Bromage, P. Tempst, M. Hampsey, and J. Reinberg 1998. SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Mol. Cell 1:1021–1031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.