59
Views
93
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Transcriptional Induction by Aromatic Amino Acids in Saccharomyces cerevisiae

, , &
Pages 3360-3371 | Received 20 Jul 1998, Accepted 15 Feb 1999, Published online: 28 Mar 2023

REFERENCES

  • André, B. 1990. The UGA3 gene regulating the GABA catabolic pathway in Saccharomyces cerevisiae codes for a putative zinc-finger protein acting on RNA amount. Mol. Gen. Genet. 220:269–276.
  • André, B. 1995. An overview of membrane transport proteins in Saccharomyces cerevisiae. Yeast 11:1575–1611.
  • André, B., C. Hein, M. Grenson, and J. Jauniaux 1993. Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae. Mol. Gen. Genet. 237:17–25.
  • André, B., D. Talibi, S. Soussi Boudekou, C. Hein, S. Vissers, and J. Coornaert 1995. Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5′-GAT(A/T)A-3′ upstream from the UGA4 gene of Saccharomyces cerevisiae. Nucleic Acids Res. 23:558–564.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl 1995. Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y.
  • Béchet, J., M. Grenson, and J. Wiame 1970. Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae. Eur. J. Biochem. 12:31–39.
  • Bennetzen, J. L., and J. Hall 1982. Codon selection in yeast. J. Biol. Chem. 257:3026–3031.
  • Bonneaud, N., O. Ozier-Kalogeropoulos, G. Y. Li, M. Labouesse, L. Minvielle-Sebastia, and J. Lacroute 1991. A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast 7:609–615.
  • Coffman, J. A., R. Rai, T. Cunningham, V. Svetlov, and J. Cooper 1996. Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:847–858.
  • Coffman, J. A., R. Rai, D. M. Loprete, T. Cunningham, V. Svetlov, and J. Cooper 1997. Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. J. Bacteriol. 179:3416–3429.
  • Cooper, T. G. 1981. Nitrogen metabolism in Saccharomyces cerevisiae, p. 39–99. In J. N. Strathern, E. W. Jones, J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces cerevisiae. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Coornaert, D., S. Vissers, B. André, and J. Grenson 1992. The UGA43 negative regulatory gene of Saccharomyces cerevisiae contains both a GATA-1 type zinc finger and a putative leucine zipper. Curr. Genet. 21:301–307.
  • Delforge, J., F. Messenguy, and J. Wiame 1975. The regulation of arginine biosynthesis in Saccharomyces cerevisiae. The specificity of argR− mutations and the general control of amino-acid biosynthesis. Eur. J. Biochem. 57:231–239.
  • Deschamps, J., E. Dubois, and J. Wiame 1979. l-Ornithine transaminase synthesis in Saccharomyces cerevisiae: regulation by inducer exclusion. Mol. Gen. Genet. 174:225–232.
  • Dickinson, J. R., M. M. Lanterman, D. J. Danner, B. M. Pearson, P. Sanz, S. J. Harrison, and J. Hewlins 1997. A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J. Biol. Chem. 272:26871–26878.
  • Drillien, R., and J. Lacroute 1972. Ureidosuccinic acid uptake in yeast and some aspects of its regulation. J. Bacteriol. 109:203–208.
  • Dubois, E., M. Grenson, and J. Wiame 1974. The participation of the anabolic glutamate dehydrogenase in the nitrogen catabolite repression of arginase in Saccharomyces cerevisiae. Eur. J. Biochem. 48:603–616.
  • Dubois, E., and J. Messenguy 1997. Integration of the multiple controls regulating the expression of the arginase gene CAR1 of Saccharomyces cerevisiae in response to different nitrogen signals: role of Gln3p, ArgRp-Mcm1p, and Ume6p. Mol. Gen. Genet. 253:568–580.
  • Fantes, P. A., L. M. Roberts, and J. Huetter 1976. Free tryptophan pool and tryptophan biosynthetic enzymes in Saccharomyces cerevisiae. Arch. Microbiol. 107:207–214.
  • Flick, J. S., and J. Thorner 1998. An essential function of a phosphoinositide-specific phospholipase C is relieved by inhibition of a cyclin-dependent protein kinase in the yeast Saccharomyces cerevisiae. Genetics 148:33–47.
  • Gietz, D., A. St. Jean, R. A. Woods, and J. Schiestl 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20:1425.
  • Grenson, M. 1969. The utilization of exogenous pyrimidines and the recycling of uridine-5′-phosphate derivatives in Saccharomyces cerevisiae, as studied by means of mutants affected in pyrimidine uptake and metabolism. Eur. J. Biochem. 11:249–260.
  • Grenson, M. 1983. Inactivation-reactivation process and repression of permease formation regulate several ammonia-sensitive permeases in the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 133:135–139.
  • Grenson, M. 1992. Amino acid transporters in yeast: structure, function and regulation, p. 219–245. In J. J. L. L. M. De Pont (ed.), Molecular aspects of transport proteins. Elsevier Science, Amsterdam, The Netherlands.
  • Grenson, M., E. Dubois, M. Piotrowska, R. Drillien, and J. Aigle 1974. Ammonia assimilation in Saccharomyces cerevisiae as mediated by the two glutamate dehydrogenases. Evidence for the gdhA locus being a structural gene for the NADP-dependent glutamate dehydrogenase. Mol. Gen. Genet. 128:73–85.
  • Grenson, M., C. Hou, and J. Crabeel 1970. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J. Bacteriol. 103:770–777.
  • Grenson, M., F. Muyldermans, K. Broman, and J. Vissers 1987. 4-Aminobutyric acid (GABA) uptake in baker’s yeast Saccharomyces cerevisiae is mediated by the general amino acid permease, the proline permease and a GABA-specific permease integrated into the GABA-catabolic pathway. Life Sci. Adv. Ser. C 6:35–39.
  • Guarente, L. 1983. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101:181–191.
  • Hein, C., and J. André 1997. A C-terminal di-leucine motif and nearby sequences are required for NH4+-induced inactivation and degradation of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae. Mol. Microbiol. 24:607–616.
  • Hein, C., J. Y. Springael, C. Volland, R. Haguenauer-Tsapis, and J. André 1995. NPI1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol. Microbiol. 18:77–87.
  • Holmberg, S., and J. Schjerling 1996. Cha4p of Saccharomyces cerevisiae activates transcription via serine/threonine response elements. Genetics 144:467–478.
  • Iraqui, I., S. Vissers, B. André, and J. Urrestarazu 1998. Characterization of cis- and trans-acting elements responsible for transcriptional induction of the ARO9 gene encoding aromatic aminotransferase II in Saccharomyces cerevisiae. Arch. Physiol. Biochem. 106:B8.
  • Iraqui, I., S. Vissers, F. Bernard, J.-O. De Craene, E. Boles, A. Urrestarazu, and J. André 1999. Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol. Cell. Biol. 19:989–1001.
  • Iraqui, I., S. Vissers, M. Cartiaux, and J. Urrestarazu 1998. Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily. Mol. Gen. Genet. 257:238–248.
  • Ito, H., Y. Fukuda, K. Murata, and J. Kimura 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Jacobs, P., J. C. Jauniaux, and J. Grenson 1980. A cis-dominant regulatory mutation linked to the argB-argC gene cluster in Saccharomyces cerevisiae. J. Mol. Biol. 139:691–704.
  • Jacq, C. et al.. 1997. The nucleotide sequence of Saccharomyces cerevisiae chromosome IV. Nature 387:75–78.
  • Jauniaux, J. C., and J. Grenson 1990. GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other baker’s yeast amino acid permeases, and nitrogen catabolite repression. Eur. J. Biochem. 190:39–44.
  • Katzmann, D. J., P. E. Burnett, J. Golin, Y. Mahe, and J. Moye-Rowley 1994. Transcriptional control of the yeast PDR5 gene by the PDR3 gene product. Mol. Cell. Biol. 14:4653–4661.
  • Keegan, L., G. Gill, and J. Ptashne 1986. Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science 231:699–704.
  • Kradolfer, P., P. Niederberger, and J. Hütter 1982. Tryptophan degradation in Saccharomyces cerevisiae: characterization of two aromatic aminotransferases. Arch. Microbiol. 133:242–248.
  • Lingens, F., W. Goebel, and J. Uesseler 1967. Regulation of the biosynthesis of aromatic amino acids in Saccharomyces cerevisiae. 2. Repression, induction and activation. Eur. J. Biochem. 1:363–374.
  • Lowry, O. H., N. J. Rosebrough, A. L. Farr, and J. Randall 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.
  • Luche, R. M., R. Sumrada, and J. Cooper 1990. A cis-acting element present in multiple genes serves as a repressor protein binding site for the yeast CAR1 gene. Mol. Cell. Biol. 10:3884–3895.
  • Lupas, A., M. Van Dyke, and J. Stock 1991. Predicting coiled coils from protein sequences. Science 252:1162–1164.
  • Ma, J., and J. Ptashne 1987. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48:847–853.
  • Magasanik, B. 1992. Regulation of nitrogen utilization, p. 283–317. In E. W. Jones, J. R. Pringle, J. R. Broach (ed.), The molecular and cellular biology of the yeast Saccharomyces cerevisiae. Gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Marczak, J. E., and J. Brandriss 1991. Analysis of constitutive and noninducible mutations of the PUT3 transcriptional activator. Mol. Cell. Biol. 11:2609–2619.
  • Marini, A. M., S. Vissers, A. Urrestarazu, and J. André 1994. Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J. 13:3456–3463.
  • Marmorstein, R., M. Carey, M. Ptashne, and J. Harrison 1992. DNA recognition by GAL4: structure of a protein-DNA complex. Nature 356:408–414.
  • Marmorstein, R., and J. Harrison 1994. Crystal structure of a PPR1-DNA complex: DNA recognition by proteins containing a Zn2Cys6 binuclear cluster. Genes Dev. 8:2504–2512.
  • Marzluf, G. A. 1997. Genetic regulation of nitrogen metabolism in the fungi. Microbiol. Mol. Biol. Rev. 61:17–32.
  • Messenguy, F., and J. Dubois 1988. The yeast ARGRII regulatory protein has homology with various RNases and DNA binding proteins. Mol. Gen. Genet. 211:102–105.
  • Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Miller, S. M., and J. Magasanik 1991. Role of the complex upstream region of the GDH2 gene in nitrogen regulation of the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:6229–6247.
  • Oliver, S. G. et al.. 1992. The complete DNA sequence of yeast chromosome III. Nature 357:38–46.
  • Pan, T., and J. Coleman 1990. GAL4 transcription factor is not a “zinc finger” but forms a Zn(II)2Cys6 binuclear cluster. Proc. Natl. Acad. Sci. USA 87:2077–2081.
  • Rai, R., J. R. Daugherty, and J. Cooper 1995. UASNTR functioning in combination with other UAS elements underlies exceptional patterns of nitrogen regulation in Saccharomyces cerevisiae. Yeast 11:247–260.
  • Rai, R., F. S. Genbauffe, R. A. Sumrada, and J. Cooper 1989. Identification of sequences responsible for transcriptional activation of the allantoate permease gene in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:602–608.
  • Reece, R. J., and J. Ptashne 1993. Determinants of binding-site specificity among yeast C6 zinc cluster proteins. Science 261:909–911.
  • Robbins, J., S. M. Dilworth, R. A. Laskey, and J. Dingwall 1991. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64:615–623.
  • Rowen, D. W., N. Esiobu, and J. Magasanik 1997. Role of GATA factor Nil2p in nitrogen regulation of gene expression in Saccharomyces cerevisiae. J. Bacteriol. 179:3761–3766.
  • Sambrook, J., E. F. Fritsch, T. Maniatis 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schjerling, P., and J. Holmberg 1996. Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators. Nucleic Acids Res. 24:4599–4607.
  • Schreve, J. L., J. K. Sin, and J. Garrett 1998. The Saccharomyces cerevisiae YCC5 (YCL025c) gene encodes an amino acid permease, Agp1, which transports asparagine and glutamine. J. Bacteriol. 180:2556–2559.
  • SentheShanmuganathan, S. 1960. The mechanism of the formation of higher alcohols from amino acids by Saccharomyces cerevisiae. Biochem. J. 74:568–576.
  • Sharp, P. M., and J. Li 1987. The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15:1281–1295.
  • Sherman, F., G. R. Fink, J. B. Hicks 1986. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shin, M., T. Shinguu, K. Sano, and J. Umezawa 1991. Metabolic fates of l-tryptophan in Saccharomyces uvarum (Saccharomyces carlsbergensis). Chem. Pharm. Bull. (Tokyo) 39:1792–1795.
  • Siddiqui, A. H., and J. Brandriss 1989. The Saccharomyces cerevisiae PUT3 activator protein associates with proline-specific upstream activation sequences. Mol. Cell. Biol. 9:4706–4712.
  • Soussi-Boudekou, S., S. Vissers, A. Urrestarazu, J. C. Jauniaux, and J. André 1997. Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae. Mol. Microbiol. 23:1157–1168.
  • Soussi-Boudekou, S., and B. André. Unpublished data.
  • Springael, J. Y., and J. André 1998. Nitrogen-regulated ubiquitination of the Gap1 permease of Saccharomyces cerevisiae. Mol. Biol. Cell 9:1253–1263.
  • Stanbrough, M., D. W. Rowen, and J. Magasanik 1995. Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc. Natl. Acad. Sci. USA 92:9450–9454.
  • Strich, R., R. T. Surosky, C. Steber, E. Dubois, F. Messenguy, and J. Esposito 1994. UME6 is a key regulator of nitrogen repression and meiotic development. Genes Dev. 8:796–810.
  • Svetlov, V. V., and J. Cooper 1995. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 11:1439–1484.
  • Talibi, D., M. Grenson, and J. André 1995. Cis- and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae. Nucleic Acids Res. 23:550–557.
  • Urrestarazu, A., S. Vissers, I. Iraqui, and J. Grenson 1998. Phenylalanine- and tyrosine-auxotrophic mutants of Saccharomyces cerevisiae impaired in transamination. Mol. Gen. Genet. 257:230–237.
  • Wach, A., A. Brachat, R. Pohlmann, and J. Philippsen 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808.
  • Webb, A. D., and J. Ingraham 1963. Fusel oil. Adv. Appl. Microbiol. 5:317–353.
  • Wiame, J. M., M. Grenson, and J. Arst 1985. Nitrogen catabolite repression in yeasts and filamentous fungi. Adv. Microbiol. Physiol. 26:1–87.
  • Xu, S., D. A. Falvey, and J. Brandriss 1995. Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:2321–2330.
  • Zhang, L., and J. Guarente 1994. The yeast activator HAP1—a GAL4 family member—binds DNA in a directly repeated orientation. Genes Dev. 8:2110–2119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.