15
Views
150
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Alien, a Highly Conserved Protein with Characteristics of a Corepressor for Members of the Nuclear Hormone Receptor Superfamily

, , , , , , , & show all
Pages 3383-3394 | Received 08 Sep 1998, Accepted 08 Jan 1999, Published online: 28 Mar 2023

REFERENCES

  • Alland, L., R. Muhle, H. Hou Jr., J. Potes, L. Chin, N. Schreiber-Agus, and J. DePinho 1997. Role of N-CoR and histone deacetylase in SIN3-mediated transcriptional repression. Nature 387:49–55.
  • Ayer, D. E., Q. A. Lawrence, and J. Eisenman 1995. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80:767–776.
  • Baniahmad, A., C. Steiner, A. C. Köhne, and J. Renkawitz 1990. Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site. Cell 61:505–514.
  • Baniahmad, A., A. C. Köhne, and J. Renkawitz 1992. A transferable silencing domain is present in the thyroid hormone receptor, in the v-erbA oncogene product and in the retinoic acid receptor. EMBO J. 11:1015–1023.
  • Baniahmad, A., I. Ha, D. Reinberg, S. Y. Tsai, M.-J. Tsai, and J. O’Malley 1993. Interaction of human thyroid hormone receptor β with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone. Proc. Natl. Acad. Sci. USA 90:8832–8836.
  • Baniahmad, A., T. P. Burris, M.-J. Tsai 1994. The nuclear hormone receptor superfamily, p. 1–24. In M.-J. Tsai, B. W. O’Malley (ed.), Mechanism of steroid hormone regulation of gene transcription. Landes Co., CRC Press, Austin, Tex.
  • Baniahmad, C., A. Baniahmad, and J. O’Malley 1994. A rapid method combining a functional test of fusion proteins in vivo and their purification. BioTechniques 16:194–196.
  • Baniahmad, A., X. Leng, T. P. Burris, S. Y. Tsai, M.-J. Tsai, and J. O’Malley 1995. The τ4 activation domain of the thyroid hormone receptor is required for release of a putative corepressor(s) necessary for transcriptional silencing. Mol. Cell. Biol. 15:76–86.
  • Baniahmad, A., D. Thormeyer, and J. Renkawitz 1997. τ4/τc/AF-2 of the thyroid hormone receptor relieves silencing of the RAR silencer core independent of both τ4 activation function and full dissociation of corepressors. Mol. Cell. Biol. 17:4259–4271.
  • Baniahmad, A., U. Dressel, and J. Renkawitz 1998. Cell-specific inhibition of RARα silencing by the AF2/τc activation domain can be overcome by the corepressor SMRT, but not N-CoR. Mol. Endocrinol. 12:504–512.
  • Barettino, D. M., M. V. Ruiz, and J. Stunnenberg 1994. Characterization of the ligand-dependent transactivation domain of thyroid hormone receptor. EMBO J. 13:3039–3049.
  • Beato, M., P. Herrlich, and J. Schütz 1995. Steroid hormone receptors: many actors in search of a plot. Cell 83:851–857.
  • Beug, H., C. Döderlein, C. Freudenstein, and J. Graf 1982. Erythroblast cell lines transformed by a temperature-sensitive mutant of avian erythroblast virus: a model system to study erythroid differentiation in vitro. J. Physiol. Suppl. 1:195–207.
  • Bourguet, W., M. Ruff, P. Chambon, H. Gronemeyer, and J. Moras 1995. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature 375:377–382.
  • Busch, K., B. Martin, A. Baniahmad, R. Renkawitz, and J. Muller 1997. At least three subdomains of v-erbA are involved in its silencing function. Mol. Endocrinol. 11:379–389.
  • Cavailles, V., S. Davois, F. L’Horset, G. Lopez, S. Hoare, P. J. Kushner, and J. Parker 1995. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J. 14:3741–3751.
  • Chakravarti, D., V. J. LaMorte, M. C. Nelson, T. Nakajima, I. G. Schulman, H. Juguilon, M. Montminy, and J. Evans 1996. Role of CBP/P300 in nuclear receptor signalling. Nature 383:99–103.
  • Chang, K.-H., Y. Chen, T.-T. Chen, W.-H. Chou, P.-L. Chen, Y.-Y. Ma, T. L. Yang-Feng, X. Leng, M.-J. Tsai, B. W. O’Malley, and J. Lee 1997. A thyroid hormone receptor coactivator negatively regulated by the retinoblastoma protein. Proc. Natl. Acad. Sci. USA 94:9040–9045.
  • Chen, J. D., and J. Evans 1995. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457.
  • Cooney, A. J., X. Leng, S. Y. Tsai, B. W. O’Malley, and J. Tsai 1993. Multiple mechanisms of chicken ovalbumin upstream promoter transcription factor-dependent repression of transactivation by the vitamin D, thyroid hormone, and retinoic acid receptors. J. Biol. Chem. 268:4152–4160.
  • Damm, K., C. C. Thompson, and J. Evans 1989. Protein encoded by v-erbA functions as a thyroid hormone receptor antagonist. Nature 339:593–597.
  • Damm, K., and J. Evans 1993. Identification of a domain required for oncogenic activity and transcriptional suppression by v-erbA and thyroid-hormone receptor α. Proc. Natl. Acad. Sci. USA 90:10668–10672.
  • Danielian, P. S., R. White, J. A. Lees, and J. Parker 1992. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 11:1025–1033.
  • Dobens, L., K. Rudolph, and J. Berger 1991. Ecdysterone regulatory elements function as both transcriptional activators and repressors. Mol. Cell. Biol. 11:1846–1853.
  • Downes, M., L. J. Burke, P. J. Bailey, and J. Muscat 1996. Two receptor interaction domains in the corepressor N-CoR/RIP13, are required for an efficient interaction with Rev-erbA α and RVR: physiological association is dependent on the E-region of the orphan receptors. Nucleic Acids Res. 24:4379–4387.
  • Eggert, M., J. Michel, S. Schneider, H. Bornfleth, A. Baniahmad, F. O. Fackelmayer, S. Schmidt, and J. Renkawitz 1997. The glucocorticoid receptor is associated with the RNA-binding nuclear matrix protein hnRNP U. J. Biol. Chem. 272:28471–28478.
  • Friedman, J. R., W. J. Fredericks, D. E. Jensen, D. W. Speicher, X.-P. Huang, E. G. Neilson, F. J. Rauscher III.. 1996. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 10:2067–2078.
  • Fondell, J. D., A. L. Roy, and J. Roeder 1993. Unliganded thyroid hormone receptor inhibits formation of a functional preinitiation complex: implications for active repression. Genes Dev. 7:1400–1410.
  • Fondell, J. D., F. Brunel, K. Hisatake, and J. Roeder 1996. Unliganded thyroid hormone receptor alpha can target TATA-binding protein for transcriptional repression. Mol. Cell. Biol. 16:281–287.
  • Fondell, J. D., H. Ge, and J. Roeder 1996. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl. Acad. Sci. USA 93:8329–8333.
  • Goubeaud, A., S. Knirr, R. Renkawitz-Pohl, and J. Paululat 1996. The Drosophila gene alien is expressed in the muscle attachment sites during embryogenesis and encodes a protein highly conserved between plants, Drosophila and vertebrates. Mech. Dev. 57:59–68.
  • Gyuris, J., E. Golemis, H. Chertkov, and J. Brent 1993. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75:791–803.
  • Hanna-Rose, W., and J. Hansen 1996. Active repression mechanisms of eukaryotic transcription repressors. Trends Genet. 12:229–234.
  • Hassig, C. A., T. C. Fleischer, A. N. Billin, S. L. Schreiber, and J. Ayer 1997. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89:341–347.
  • Heinzel, T., R. M. Lavinsky, T.-M. Mullen, M. Söderström, C. D. Laherty, J. Torchia, W.-M. Yang, G. Brard, S. D. Ngo, J. R. Davie, E. Seto, R. N. Eisenman, D. W. Rose, C. K. Glass, and J. Rosenfeld 1997. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387:43–48.
  • Henttu, P. M. A., E. Kalkhoven, and J. Parker 1997. AF-2 activity and recruitment of steroid receptor coactivator 1 to the estrogen receptor depend on a lysine residue conserved in nuclear receptors. Mol. Cell. Biol. 17:1832–1839.
  • Hong, H., K. Kohli, A. Trivedi, D. L. Johnson, and J. Stallcup 1996. GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc. Natl. Acad. Sci. USA 93:4948–4952.
  • Hörlein, A., A. M. Näär, T. Heinzel, J. Torchia, B. Gloss, R. Kurokawa, A. Ryan, Y. Kamei, M. Söderström, C. K. Glass, and J. Rosenfeld 1995. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404.
  • Hörlein, A. J., T. Heinzel, and J. Rosenfeld 1996. Gene regulation by thyroid hormone receptors. Endocrinol. Diabetes 3:412–416.
  • Horwitz, K. B., T. A. Jackson, D. L. Bain, J. K. Richter, G. S. Takimoto, and J. Tung 1996. Nuclear receptor coactivators and corepressors. Mol. Endocrinol. 10:1167–1177.
  • Kadosh, D., and J. Struhl 1997. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89:365–371.
  • Kamei, Y., L. Xu, T. Heinzel, J. Torchia, R. Kurokawa, B. Gloss, S. C. Lin, R. A. Heyman, D. W. Rose, C. K. Glass, and J. Rosenfeld 1996. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:403–414.
  • Laherty, C. D., W.-M. Yang, J.-M. Sun, J. R. Davie, E. Seto, and J. Eisenman 1997. Histone deacetylase associated with the mSin3 corepressor mediate Mad transcriptional repression. Cell 89:349–356.
  • LeDouarin, B., C. Zechel, J. M. Garnier, Y. Lutz, L. Tora, P. Pierrat, D. Heery, H. Gronemeyer, P. Chambon, and J. Losson 1995. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function AF-2 of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J. 14:2020–2033.
  • Lee, J. W., H.-S. Choi, J. Gyuris, R. Brent, and J. Moore 1995. Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol. Endocrinol. 9:243–254.
  • Levine, M., and J. Manley 1989. Transcriptional repression of eukaryotic promoters. Cell 59:404–408.
  • Li, H., C. Leo, D. J. Schroen, and J. Chen 1997. Characterization of receptor interaction and transcriptional repression by the corepressor SMRT. Mol. Endocrinol. 11:2025–2037.
  • Lin, B. C., S. H. Hong, S. Krig, S. M. Yoh, and J. Privalsky 1997. A conformational switch in nuclear hormone receptors is involved in coupling hormone binding to corepressor release. Mol. Cell. Biol. 17:6131–6138.
  • Mangelsdorf, D. J., C. Thummel, M. Beato, P. Herrlich, G. Schütz, K. Umesono, B. Blumberg, P. Kastner, M. Mark, P. Chambon, and J. Evans 1995. The nuclear receptor superfamily: the second decade. Cell 83:835–839.
  • Mangelsdorf, D. J., and J. Evans 1995. The RXR heterodimers and orphan receptors. Cell 83:841–850.
  • Martin, B., R. Renkawitz, and J. Muller 1994. Two silencing sub-domains of v-erbA synergize with each other, but not with RXR. Nucleic Acids Res. 22:4899–4905.
  • Nagy, L., H.-Y. Kao, D. Chakravarti, R. J. Lin, C. A. Hassig, D. E. Ayer, S. L. Schreiber, and J. Evans 1997. Role of N-CoR and histone deacetylase in SIN3-mediated transcriptional repression mediated by a complex containing SMRT, mSIN3A and histone deacetylase. Cell 89:373–380.
  • Norman, C., M. Runswick, R. Pollock, and J. Treisman 1988. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55:989–1003.
  • Oñate, S. A., S. Y. Tsai, M.-J. Tsai, and J. O’Malley 1995. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–1357.
  • Parker, M. G., and J. White 1996. Nuclear receptors spring into action. Nat. Struct. Biol. 3:113–115.
  • Puigserver, P., Z. Wu, C. W. Park, R. Graves, M. Wright, and J. Spiegelman 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839.
  • Renaud, J.-P., N. Rochel, M. Ruff, V. Vivat, P. Chambon, H. Gronemeyer, and J. Moras 1995. Crystal structure of the RAR-γ-ligand-binding domain bound to all-trans retinoic acid. Nature 378:681–689.
  • Renkawitz, R. 1990. Transcriptional repression in eukaryotes. Trends Genet. 6:192–197.
  • Russo, M. W., B. R. Sevetson, and J. Milbrandt 1995. Identification of NAB1, a repressor of NGFI-A and Krox20 mediated transcription. Proc. Natl. Acad. Sci. USA 92:6873–6877.
  • Schmidt, S., A. Baniahmad, M. Eggert, S. Schneider, and J. Renkawitz 1998. Multiple receptor interaction domains of GRIP1 function in synergy. Nucleic Acids Res. 26:1191–1197.
  • Shibata, H., Z. Nawaz, S. Y. Tsai, B. W. O’Malley, and J. Tsai 1997. Gene silencing by chicken ovalbumin upstream promoter factor I COUP-TFI is mediated by transcriptional corepressors, nuclear receptor corepressor N-CoR and silencing mediator for retinoic acid and thyroid hormone receptor SMRT. Mol. Endocrinol. 11:714–724.
  • Söderstrom, M., A. Vo, T. Heinzel, R. M. Lavinsky, W. M. Yang, E. Seto, D. A. Peterson, M. G. Rosenfeld, and J. Glass 1997. Differential effects of nuclear receptor corepressor (N-CoR) expression levels on retinoic acid receptor-mediated repression support the existence of dynamically regulated corepressor complexes. Mol. Endocrinol. 11:682–692.
  • Svaren, J. B., R. Sevetson, E. B. Apel, B. D. Zimonjic, N. C. Popescu, and J. Milbrandt 1996. NAB2, a corepressor of NGFI-A Egr-1 and Krox20, is induced by proliferative and differentiative stimuli. Mol. Cell. Biol. 16:3545–3553.
  • Takeshita, A., G. R. Cardona, N. Koibuchi, C. S. Suen, and J. Chin 1997. TRAM-1, a novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1. J. Biol. Chem. 272:27778–27786.
  • Tenbaum, S. P., and J. Baniahmad 1997. Nuclear hormone receptors: structure, function and involvement in disease. Int. J. Biochem. Cell. Biol. 29:1325–1341.
  • Thomas, H. E., H. G. Stunnenberg, and J. Stewart 1993. Heterodimerization of the Drosophila ecdysone receptor with retinoid X receptor and ultraspiracle. Nature 362:471–475.
  • Tong, G.-X., M. M. R. Tanen, and J. Bagchi 1995. Ligand modulates the interaction of thyroid hormone receptor β with the basal transcription machinery. J. Biol. Chem. 270:10601–10611.
  • Tong, G.-X., M. Jeyakumar, M. M. R. Tanen, and J. Bagchi 1996. Transcriptional silencing by unliganded thyroid hormone receptor β requires a soluble corepressor that interacts with the ligand-binding domain of the receptor Mol. Cell. Biol. 16:1909–1920.
  • Torchia, J., D. W. Rosenfeld, J. Inostroza, Y. Kamei, S. Westin, C. K. Glass, and J. Rosenfeld 1997. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387:677–684.
  • Tourmente, S., S. Chapel, D. Dreau, M. E. Drake, A. Bruhat, J. L. Couderc, and J. Dastugue 1993. Enhancer and silencer elements within the first intron mediate the transcriptional regulation of the beta 3 tubulin gene by 20-hydroxyecdysone in Drosophila Kc cells. Insect Biochem. Mol. Biol. 23:137–143.
  • Voegel, J. J., M. J. S. Heine, C. Zechel, P. Chambon, and J. Gronemeyer 1996. TIF2, a 160 kDA transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15:3667–3675.
  • Wagner, R. L., J. W. Apriletti, M. E. McGrath, B. L. West, J. D. Baxter, and J. Fletterick 1995. A structural role for hormone in the thyroid hormone receptor. Nature 378:690–697.
  • Wong, J., Y.-B. Shi, and J. Wolffe 1995. A role for nucleosome assembly in both silencing and activation of the Xenopus TRβA gene by the thyroid hormone receptor. Genes Dev. 9:2696–2711.
  • Yang, W.-M., C. Inouye, Y. Zeng, D. Dears, and J. Seto 1996. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc. Natl. Acad. Sci. USA 93:12845–12850.
  • Yao, T.-P., B. M. Forman, Z. Jlang, L. Cherbas, J. D. Chen, M. McKeown, P. Cherbas, and J. Evans 1993. Functional ecdysone receptor is the product of EcR and ultraspiracle. Nature 366:476–479.
  • Yeh, S., and J. Chang 1996. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostata cells. Proc. Natl. Acad. Sci. USA 93:5517–5521.
  • Yoshida, M., S. Horinouchi, and J. Beppu 1995. Trichostatin A and Trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 17:423–430.
  • Zamir, I., J. Zhang, and J. Lazar 1997. Stoichiometric and steric principles governing repression by nuclear hormone receptors. Genes Dev. 11:835–846.
  • Zamir, I., J. Dawson, R. M. Lavinsky, C. K. Glass, M. G. Rosenfeld, and J. Lazar 1997. Cloning and characterization of a corepressor and potential component of the nuclear hormone receptor repression complex. Proc. Natl. Acad. Sci. USA 94:14400–14405.
  • Zhang, Y., R. Iratni, H. Erdjument-Bromage, P. Tempst, and J. Reinberg 1997. Histone deacetylase and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89:357–364.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.