141
Views
246
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Prohibitins Regulate Membrane Protein Degradation by the m-AAA Protease in Mitochondria

, &
Pages 3435-3442 | Received 09 Dec 1998, Accepted 30 Jan 1999, Published online: 28 Mar 2023

REFERENCES

  • Ackermann, S. H., and J. Tzagoloff 1990. ATP10, a yeast nuclear gene required for the assembly of the mitochondrial F1-F0 complex. J. Biol. Chem. 265:9952–9959.
  • Arlt, H., G. Steglich, R. Perryman, B. Guiard, W. Neupert, and J. Langer 1998. The formation of respiratory chain complexes in mitochondria is under the proteolytic control of the m-AAA-protease. EMBO J. 17:4837–4847.
  • Arlt, H., R. Tauer, H. Feldmann, W. Neupert, and J. Langer 1996. The YTA10-12-complex, an AAA protease with chaperone-like activity in the inner membrane of mitochondria. Cell 85:875–885.
  • Berger, K. H., and J. Yaffe 1998. Prohibitin family members interact genetically with mitochondrial inheritance components in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:4043–4052.
  • Brodsky, J. L., and J. McCracken 1997. ER-associated and proteasome-mediated protein degradation: how two topologically restricted events came together. Trends Cell Biol. 7:151–156.
  • Campbell, C. L., N. Tanaka, K. H. White, and J. Thorsness 1994. Mitochondrial morphological and functional defects in yeast caused by yme1 are suppressed by mutation of a 26S protease subunit homologue. Mol. Biol. Cell 5:899–905.
  • Casari, G., M. De-Fusco, S. Ciarmatori, M. Zeviani, M. Mora, P. Fernandez, G. DeMichele, A. Filla, S. Cocozza, R. Marconi, A. Durr, B. Fontaine, and J. Ballabio 1998. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93:973–983.
  • Coates, P. J., D. J. Jamieson, K. Smart, A. R. Prescott, and J. Hall 1997. The prohibitin family of mitochondrial proteins regulate replicative lifespan. Curr. Biol. 7:R607–R610.
  • Dell’Orco, R. T., J. K. McClung, E. R. Jupe, and J. Liu 1996. Prohibitin and the senescent phenotype. Exp. Gerontol. 31:245–252.
  • Douglas, M., D. Finkelstein, and J. Butow 1979. Analysis of products of mitochondrial protein synthesis in yeast: genetic and biochemical aspects. Methods Enzymol. 56:58–66.
  • Guélin, E., M. Rep, and J. Grivell 1994. Sequence of the AFG3 gene encoding a new member of the FtsH/Yme1/Tma subfamily of the AAA-protein family. Yeast 10:1389–1394.
  • Guélin, E., M. Rep, and J. Grivell 1996. Afg3p, a mitochondrial ATP-dependent metalloprotease, is involved in the degradation of mitochondrially-encoded Cox1, Cox3, Cob, Su6, Su8 and Su9 subunits of the inner membrane complexes III, IV and V. FEBS Lett. 381:42–46.
  • Herrmann, J. M., H. Fölsch, W. Neupert, R. A. Stuart 1994. Isolation of yeast mitochondria and study of mitochondrial protein translation, p. 538–544. In D. E. Celis (ed.), Cell biology: a laboratory handbook. Academic Press, San Diego, Calif.
  • Hicke, L. 1997. Ubiquitin-dependent internalization and down-regulation of plasma membrane proteins. FASEB J. 11:1215–1225.
  • Ikonen, E., K. Fiedler, R. G. Parton, and J. Simons 1995. Prohibitin, an antiproliferative protein, is localized to mitochondria. FEBS Lett. 358:273–277.
  • Kihara, A., Y. Akiyama, and J. Ito 1996. A protease complex in the Escherichia coli plasma membrane: HflKC (HflA) forms a complex with FtsH (HflB), regulating its proteolytic activity against SecY. EMBO J. 15:6122–6131.
  • Kihara, A., Y. Akiyama, and J. Ito 1997. Host regulation of lysogenic decision in bacteriophage λ: transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA). Proc. Natl. Acad. Sci. USA 94:5544–5549.
  • Langer, T., K. Leonhard, H. Arlt, R. Perryman, W. Neupert 1997. Degradation of membrane proteins by AAA proteases in mitochondria, p. 323–331. In V. K. Hopsu-Havu, M. Järvinen, H. Kirschke (ed.), Proteolysis in cell functions. IOS Press, Amsterdam, The Netherlands.
  • Langer, T., A. Pajic, I. Wagner, and J. Neupert 1995. Proteolytic breakdown of membrane-associated polypeptides in mitochondria of Saccharomyces cerevisiae. Methods Enzymol. 260:495–503.
  • Leonhard, K., J. M. Herrmann, R. A. Stuart, G. Mannhaupt, W. Neupert, and J. Langer 1996. AAA proteases with catalytic sites on opposite membrane surfaces comprise a proteolytic system for the ATP-dependent degradation of inner membrane proteins in mitochondria. EMBO J. 15:4218–4229.
  • McClung, J. K., D. B. Danner, D. A. Stewart, J. R. Smith, E. L. Schneider, C. K. Lumpkin, R. T. Dell’Orco, and J. Nuell 1989. Isolation of a cDNA that hybrid selects antiproliferative mRNA from rat liver. Biochem. Biophys. Res. Commun. 164:1316–1322.
  • McKee, E. E., and J. Poyton 1984. Mitochondrial gene expression in Saccharomyces cerevisiae. Optimal conditions for protein synthesis in isolated mitochondria. J. Biol. Chem. 259:9320–9331.
  • Nakai, T., Y. Mera, T. Yasuhara, and J. Ohashi 1994. Divalent metal ion-dependent mitochondrial degradation of unassembled subunits 2 and 3 of cytochrome c oxidase. J. Biochem. (Tokyo) 116:752–758.
  • Nakai, T., T. Yasuhara, Y. Fujiki, and J. Ohashi 1995. Multiple genes, including a member of the AAA family, are essential for the degradation of unassembled subunit 2 of cytochrome c oxidase in yeast mitochondria. Mol. Cell. Biol. 15:4441–4452.
  • Nuell, M. J., D. A. Stewart, L. Walker, V. Friedman, C. M. Wood, G. A. Owens, J. R. Smith, E. L. Schneider, R. Dell’Arco, C. K. Lumpkin, D. B. Danner, and J. McClung 1991. Prohibitin, an evolutionary conserved intracellular protein that blocks DNA synthesis in normal fibroblasts and HeLa cells. Mol. Cell. Biol. 11:1372–1381.
  • Pajic, A., R. Tauer, H. Feldmann, W. Neupert, and J. Langer 1994. Yta10p is required for the ATP-dependent degradation of polypeptides in the inner membrane of mitochondria. FEBS Lett. 353:201–206.
  • Paul, M. F., and J. Tzagoloff 1995. Mutations in RCA1 and AFG3 inhibit F1-ATPase assembly in Saccharomyces cerevisiae. FEBS Lett. 373:66–70.
  • Rep, M., and J. Grivell 1996. The role of protein degradation in mitochondrial function and biogenesis. Curr. Genet. 30:367–380.
  • Rojo, E. E., B. Guiard, W. Neupert, and J. Stuart 1998. Sorting of d-lactate dehydrogenase to the inner membrane of mitochondria. J. Biol. Chem. 273:8040–8047.
  • Sommer, T., and J. Wolf 1997. Endoplasmic reticulum degradation: reverse protein flow of no return. FASEB J. 11:1227–1233.
  • Suzuki, C. K., M. Rep, J. M. Van Dijl, K. Suda, L. A. Grivell, and J. Schatz 1997. ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem. Sci. 22:118–123.
  • Tauer, R., G. Mannhaupt, R. Schnall, A. Pajic, T. Langer, and J. Feldmann 1994. Yta10p, a member of a novel ATPase family in yeast, is essential for mitochondrial function. FEBS Lett. 353:197–200.
  • Terashima, M., K.-M. Kim, T. Adachi, P. J. Nielsen, M. Reth, G. Köhler, and J. Lamers 1994. The IgM antigen receptor of B lymphocytes is associated with prohibitin and a prohibitin-related protein. EMBO J. 13:3782–3792.
  • Thorsness, P. E., K. H. White, and J. Fox 1993. Inactivation of YME1, a member of the ftsH-SEC18-PAS1-CDC48 family of putative ATPase-encoding genes, causes increased escape of DNA from mitochondria in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:5418–5426.
  • Tzagoloff, A., J. Yue, J. Jang, and J. Paul 1994. A new member of a family of ATPase is essential for assembly of mitochondrial respiratory chain and ATP synthetase complexes in Saccharomyces cerevisiae. J. Biol. Chem. 269:26144–26151.
  • Wach, A., A. Brachat, R. Poehlmann, and J. Philippsen 1994. New heterologous modules for classical or PCR-based gene disruption in Saccharomyces cerevisiae. Yeast 10:1793–1808.
  • Zinser, E., and J. Daum 1995. Isolation and biochemical characterization of organelles from the yeast Saccharomyces cerevisiae. Yeast 11:493–536.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.