13
Views
36
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Cooperation between Phosphorylation and Acetylation Processes in Transcriptional Control

, , &
Pages 3474-3484 | Received 04 Jan 1999, Accepted 22 Feb 1999, Published online: 28 Mar 2023

REFERENCES

  • Alessi, D. R. 1997. The protein kinase C inhibitors Ro 318220 and GF 109203X are equally potent inhibitors of MAPKAP kinase-1β (Rsk-2) and p70 S6 kinase. FEBS Lett. 402:121–123.
  • Alessi, D. R., A. Cuenda, P. Cohen, D. T. Dudley, and J. Saltiel 1995. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem. 270:27489–27494.
  • Alland, L., R. Muhle, H. J. Hou, J. Potes, L. Chin, A. N. Schreiber, and J. DePinho 1997. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387:49–55.
  • Allfrey, V. G., R. Faulkner, and J. Mirsky 1964. Acetylation and methylation of histones and their possible role in regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA 51:786–794.
  • Arany, Z., D. Newsome, E. Oldread, D. M. Livingston, and J. Eckner 1995. A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 374:81–84.
  • Arany, Z., W. R. Sellers, D. M. Livingston, and J. Eckner 1994. E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell 77:799–800 (Letter.).
  • Archer, T. K., P. Lefebvre, R. G. Wolford, and J. Hager 1992. Transcription factor loading on the MMTV promoter: a bimodal mechanism for promoter activation. Science 255:1573–1576 (Erratum, 256:161.)
  • Bannister, A. J., and J. Kouzarides 1995. CBP-induced stimulation of c-Fos activity is abrogated by E1A. EMBO J. 14:4758–4762.
  • Barratt, M. J., C. A. Hazzalin, E. Cano, and J. Mahadevan 1994. Mitogen-stimulated phosphorylation of histone H3 is targeted to a small hyperacetylation-sensitive fraction. Proc. Natl. Acad. Sci. USA 91:4781–4785.
  • Bartl, S., J. Taplick, G. Lagger, H. Khier, K. Kuchler, and J. Seiser 1997. Identification of mouse histone deacetylase 1 as a growth factor-inducible gene. Mol. Cell. Biol. 17:5033–5043.
  • Boronat, S., H. Richard-Foy, and J. Pina 1997. Specific deactivation of the mouse mammary tumor virus long terminal repeat promoter upon continuous hormone treatment. J. Biol. Chem. 272:21803–21810.
  • Brehm, A., E. A. Miska, D. J. McCance, J. L. Reid, A. J. Bannister, and J. Kouzarides 1998. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391:597–601.
  • Brenner, D. A., M. O’Hara, P. Angel, M. Chojkier, and J. Karin 1989. Prolonged activation of jun and collagenase genes by tumour necrosis factor-alpha. Nature 337:661–663.
  • Brownell, J. E., J. Zhou, T. Ranalli, R. Kobayashi, D. G. Edmondson, S. Y. Roth, and J. Allis 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851.
  • Cano, E., M. J. Barratt, and J. Mahadevan 1992. Which histone kinase? Nature 360:116 (Letter.)
  • Chen, R.-H., C. Sarnecki, and J. Blenis 1992. Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol. Cell. Biol. 12:915–927.
  • Chireux, M., E. Espinos, S. Bloch, M. Yoshida, and J. Weber 1996. Histone hyperacetylating agents stimulate promoter activity of human choline acetyltransferase gene in transfection experiment. Mol. Brain Res. 39:68–78.
  • Chirgwin, J. M., A. E. Przybyla, R. J. MacDonald, and J. Rutter 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299.
  • Clayton, A. L., T. R. Hebbes, A. W. Thorne, and J. Crane 1993. Histone acetylation and gene induction in human cells. FEBS Lett. 336:23–26.
  • Cuisset, L., L. Tichonicky, P. Jaffray, and J. Delpech 1997. The effects of sodium butyrate on transcription are mediated through activation of a protein phosphatase. J. Biol. Chem. 272:24148–24153.
  • Datti, A., and J. Dennis 1993. Regulation of UDP-GlcNAc:Gal β1-3GalNAc-R β 1-6-N-acetylglucosaminyltransferase (GlcNAc to GalNAc) in Chinese hamster ovary cells. J. Biol. Chem. 268:5409–5416.
  • Deak, M., A. D. Clifton, L. M. Lucocq, and J. Alessi 1998. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17:4426–4441.
  • Dent, P., A. Lavoinne, S. Nakielny, F. B. Caudwell, P. Watt, and J. Cohen 1990. The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature 348:302–308.
  • Eckner, R., M. E. Ewen, D. Newsome, M. Gerdes, J. A. DeCaprio, J. B. Lawrence, and J. Livingston 1994. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 8:869–884.
  • Espinos, E., and J. Weber 1998. Activation of the MAP kinase cascade by histone deacetylase inhibitors is required for the stimulation of choline acetyltransferase gene promoter. Mol. Brain Res. 56:118–124.
  • Fan, X. D., M. Goldberg, and J. Bloom 1988. Interferon-gamma-induced transcriptional activation is mediated by protein kinase C. Proc. Natl. Acad. Sci. USA 85:5122–5125.
  • Garcia, V. P., L. A. Jimenez, A. I. Castillo, and J. Aranda 1997. Histone acetylation influences thyroid hormone and retinoic acid-mediated gene expression. DNA Cell Biol. 16:421–431.
  • Girardot, V., T. Rabilloud, M. Yoshida, T. Beppu, J. J. Lawrence, and J. Khochbin 1994. Relationship between core histone acetylation and histone H10 gene activity. Eur. J. Biochem. 224:885–892.
  • Gorman, C. M., B. H. Howard, and J. Reeves 1983. Expression of recombinant plasmids in mammalian cells is enhanced by sodium butyrate. Nucleic Acids Res. 11:7631–7648.
  • Grunstein, M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389:349–352.
  • Gu, W., and J. Roeder 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606.
  • Hebbes, T. R., A. W. Thorne, A. L. Clayton, and J. Crane 1992. Histone acetylation and globin gene switching. Nucleic Acids Res. 20:1017–1022.
  • Hebbes, T. R., A. W. Thorne, and J. Crane 1988. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7:1395–1402.
  • Heinzel, T., R. M. Lavinsky, T. M. Mullen, M. Soderstrom, C. D. Laherty, J. Torchia, W. M. Yang, G. Brard, S. D. Ngo, J. R. Davie, E. Seto, R. N. Eisenman, D. W. Rose, C. K. Glass, and J. Rosenfeld 1997. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387:43–48.
  • Hendzel, M. J., Y. Wei, M. A. Mancini, A. Van Hooser, T. Ranalli, B. R. Brinkley, D. P. Bazett-Jones, and J. Allis 1997. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360.
  • Hidaka, H., M. Inagaki, S. Kawamoto, and J. Sasaki 1984. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry 23:5036–5041.
  • Hidaka, H., and J. Yokokura 1996. Molecular and cellular pharmacology of a calcium/calmodulin-dependent protein kinase II (CaM kinase II) inhibitor, KN-62, and proposal of CaM kinase phosphorylation cascades. Adv. Pharmacol. 36:193–219.
  • Imhof, A., X. J. Yang, V. V. Ogryzko, Y. Nakatani, A. P. Wolffe, and J. Ge 1997. Acetylation of general transcription factors by histone acetyltransferases. Curr. Biol. 7:689–692.
  • Janknecht, R., and J. Hunter 1996. Versatile molecular glue. Transcriptional control. Curr. Biol. 6:951–954.
  • Jenster, G., T. E. Spencer, M. M. Burcin, S. Y. Tsai, M. J. Tsai, and J. O’Malley 1997. Steroid receptor induction of gene transcription: a two-step model. Proc. Natl. Acad. Sci. USA 94:7879–7884.
  • Jeong, S., and J. Stein 1994. Micrococcal nuclease digestion of nuclei reveals extended nucleosome ladders having anomalous DNA lengths for chromatin assembled on non-replicating plasmids in transfected cells. Nucleic Acids Res. 22:370–375.
  • Juan, G., F. Traganos, W. M. James, J. M. Ray, M. Roberge, D. M. Sauve, H. Anderson, and J. Darzynkiewicz 1998. Histone H3 phosphorylation and expression of cyclins A and B1 measured in individual cells during their progression through G2 and mitosis. Cytometry 32:71–77.
  • Kadonaga, J. T. 1998. Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92:307–313.
  • Kadosh, D., and J. Struhl 1998. Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev. 12:797–805.
  • Khochbin, S., and J. Wolffe 1993. Developmental regulation and butyrate-inducible transcription of the Xenopus histone H10 promoter. Gene 128:173–180.
  • Kitabayashi, I., R. Eckner, Z. Arany, R. Chiu, G. Gachelin, D. M. Livingston, and J. Yokoyama 1995. Phosphorylation of the adenovirus E1A-associated 300 kDa protein in response to retinoic acid and E1A during the differentiation of F9 cells. EMBO J. 14:3496–3509.
  • Korzus, E., J. Torchia, D. W. Rose, L. Xu, R. Kurokawa, E. M. McInerney, T. M. Mullen, C. K. Glass, and J. Rosenfeld 1998. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279:703–707.
  • Kuo, M. H., J. Zhou, P. Jambeck, M. E. Churchill, and J. Allis 1998. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev. 12:627–639.
  • Kurita-Ochiai, T., K. Fukushima, and J. Ochiai 1997. Butyric acid-induced apoptosis of murine thymocytes, splenic T cells, and human Jurkat T cells. Infect. Immun. 65:35–41.
  • Kurokawa, R., D. Kalafus, M. H. Ogliastro, C. Kioussi, L. Xu, J. Torchia, M. G. Rosenfeld, and J. Glass 1998. Differential use of CREB binding protein-coactivator complexes. Science 279:700–703.
  • Lee, J. S., K. M. Galvin, R. H. See, R. Eckner, D. Livingston, E. Moran, and J. Shi 1995. Relief of YY1 transcriptional repression by adenovirus E1A is mediated by E1A-associated protein p300. Genes Dev. 9:1188–1198 (Erratum, 9:1948–1949.)
  • Lew, D. J., T. Decker, J. E. Darnell Jr.. 1989. Alpha interferon and gamma interferon stimulate transcription of a single gene through different signal transduction pathways. Mol. Cell. Biol. 9:5404–5411.
  • Li, Q., M. Herrler, N. Landsberger, N. Kaludov, V. V. Ogryzko, Y. Nakatani, and J. Wolffe 1998. Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J. 17:6300–6315.
  • Luo, R. X., A. A. Postigo, and J. Dean 1998. Rb interacts with histone deacetylase to repress transcription. Cell 92:463–473.
  • Magnaghi, J. L., R. Groisman, I. Naguibneva, P. Robin, S. Lorain, V. J. Le, F. Troalen, D. Trouche, and J. Harel 1998. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391:601–605.
  • Mahadevan, L. C., A. C. Willis, and J. Barratt 1991. Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65:775–783.
  • Martiny-Baron, G., M. G. Kazanietz, H. Mischak, P. M. Blumberg, G. Kochs, H. Hug, D. Marme, and J. Schachtele 1993. Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976. J. Biol. Chem. 268:9194–9197.
  • Nagy, L., H. Y. Kao, D. Chakravarti, R. J. Lin, C. A. Hassig, D. E. Ayer, S. L. Schreiber, and J. Evans 1997. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380.
  • Nakajima, T., A. Fukamizu, J. Takahashi, F. H. Gage, T. Fisher, J. Blenis, and J. Montminy 1996. The signal-dependent coactivator CBP is a nuclear target for pp90rsk. Cell 86:465–474.
  • Neuwald, A. F., and J. Landsman 1997. GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem. Sci. 22:154–155.
  • Perkins, N. D., L. K. Felzien, J. C. Betts, K. Leung, D. H. Beach, and J. Nabel 1997. Regulation of NF-κB by cyclin-dependent kinases associated with the p300 coactivator. Science 275:523–527.
  • Rochette, E. C., C. Fromental, and J. Chambon 1990. General repression of enhanson activity by the adenovirus-2 E1A proteins. Genes Dev. 4:137–150.
  • Rogakou, E. P., D. R. Pilch, A. H. Orr, V. S. Ivanova, and J. Bonner 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273:5858–5868.
  • Rousseau, D., S. Khochbin, C. Gorka, and J. Lawrence 1992. Induction of H10-gene expression in B16 murine melanoma cells. Eur. J. Biochem. 208:775–779.
  • Rundlett, S. E., A. A. Carmen, R. Kobayashi, S. Bavykin, B. M. Turner, and J. Grunstein 1996. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc. Natl. Acad. Sci. USA 93:14503–14508.
  • Struhl, K. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12:599–606.
  • Taunton, J., C. A. Hassig, and J. Schreiber 1996. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411.
  • Th’ng, J. P., X. W. Guo, R. A. Swank, H. A. Crissman, and J. Bradbury 1994. Inhibition of histone phosphorylation by staurosporine leads to chromosome decondensation. J. Biol. Chem. 269:9568–9573.
  • Toullec, D., P. Pianetti, H. Coste, P. Bellevergue, P. T. Grand, M. Ajakane, V. Baudet, P. Boissin, E. Boursier, F. Loriolle et al.. 1991. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J. Biol. Chem. 266:15771–15781.
  • Trouche, D., and J. Kouzarides 1996. E2F1 and E1A(12S) have a homologous activation domain regulated by RB and CBP. Proc. Natl. Acad. Sci. USA 93:1439–1442.
  • Van Lint, C., S. Emiliani, M. Ott, and J. Verdin 1996. Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J. 15:1112–1120.
  • Van Lint, C., S. Emiliani, and J. Verdin 1996. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr. 5:245–253.
  • Velcich, A., and J. Ziff 1985. Adenovirus E1a proteins repress transcription from the SV40 early promoter. Cell 40:705–716.
  • Wade, P. A., D. Pruss, and J. Wolffe 1997. Histone acetylation: chromatin in action. Trends Biochem. Sci. 22:128–132.
  • Whitlock, J. P. Jr., R. Augustine, and J. Schulman 1980. Calcium-dependent phosphorylation of histone H3 in butyrate-treated HeLa cells. Nature 287:74–76.
  • Whitlock, J. P. Jr., D. Galeazzi, and J. Schulman 1983. Acetylation and calcium-dependent phosphorylation of histone H3 in nuclei from butyrate-treated HeLa cells. J. Biol. Chem. 258:1299–1304.
  • Yaciuk, P., and J. Moran 1991. Analysis with specific polyclonal antiserum indicates that the E1A-associated 300-kDa product is a stable nuclear phosphoprotein that undergoes cell cycle phase-specific modification. Mol. Cell. Biol. 11:5389–5397.
  • Yang, C. H., W. Shi, L. Basu, A. Murti, S. N. Constantinescu, L. Blatt, E. Croze, J. E. Mullersman, and J. Pfeffer 1996. Direct association of STAT3 with the IFNAR-1 chain of the human type I interferon receptor. J. Biol. Chem. 271:8057–8061.
  • Yang, W. M., C. Inouye, Y. Zeng, D. Bearss, and J. Seto 1996. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc. Natl. Acad. Sci. USA 93:12845–12850.
  • Yin, T., and J. Yang 1994. Mitogen-activated protein kinases and ribosomal S6 protein kinases are involved in signaling pathways shared by interleukin-11, interleukin-6, leukemia inhibitory factor, and oncostatin M in mouse 3T3-L1 cells. J. Biol. Chem. 269:3731–3738.
  • Yoshida, H., and J. Sugita 1992. A novel tetracyclic peptide, trapoxin, induces phenotypic change from transformed to normal in sis-oncogene-transformed NIH3T3 cells. Jpn. J. Cancer Res. 83:324–328.
  • Zhang, W., and J. Bieker 1998. Acetylation and modulation of erythroid Kruppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc. Natl. Acad. Sci. USA 95:9855–9860.
  • Zhao, Y., C. Bjørbaek, S. Weremowicz, C. C. Morton, and J. Moller 1995. RSK3 encodes a novel pp90rsk isoform with a unique N-terminal sequence: growth factor-stimulated kinase function and nuclear translocation. Mol. Cell. Biol. 15:4353–4363.
  • Zlatanova, J., and J. Doenecke 1994. Histone H10: a major player in cell differentiation? FASEB J. 8:1260–1268.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.