47
Views
103
CrossRef citations to date
0
Altmetric
Gene Expression

Stem-Loop Binding Protein Facilitates 3′-End Formation by Stabilizing U7 snRNP Binding to Histone Pre-mRNA

, , &
Pages 3561-3570 | Received 21 Dec 1998, Accepted 18 Feb 1999, Published online: 28 Mar 2023

REFERENCES

  • Abbott, J., W. F. Marzluff, and J. Gall 1999. The stem loop binding protein (SLBP1) is present in coiled bodies of the Xenopus germinal vesicle. Mol. Biol. Cell 10:487–499.
  • Bond, U. M., T. A. Yario, and J. Steitz 1991. Multiple processing-defective mutations in a mammalian histone premessenger RNA are suppressed by compensatory changes in U7 RNA both in vivo and in vitro. Genes Dev. 5:1709–1722.
  • Cho, D. C., E. C. Scharl, and J. Steitz 1995. Decreasing the distance between the two conserved sequence elements of histone pre-messenger RNA interferes with 3′ processing in vitro. RNA 1:905–914.
  • Cotten, M., O. Gick, A. Vasserot, G. Schaffner, and J. Birnstiel 1988. Specific contacts between mammalian U7 snRNA and histone precursor RNA are indispensable for the in vitro RNA processing reaction. EMBO J. 7:801–808.
  • Cotten, M., B. Oberhauser, H. Brunar, A. Holzner, G. Issakides, C. R. Noe, G. Schaffner, E. Wagner, and J. Birnstiel 1991. 2′- O -Methyl, 2′- O -ethyl oligoribonucleotides and phosphorothioate oligodeoxyribonucleotides as inhibitors of the in vitro U7 snRNP-dependent mRNA processing event. Nucleic Acids Res. 19:2629–2635.
  • Dominski, Z., J. Sumerel, R. J. Hanson, and J. Marzluff 1995. The polyribosomal protein bound to the 3′ end of histone mRNA can function in histone pre-mRNA processing. RNA 1:915–923.
  • Eckner, R., W. Ellmeier, and J. Birnstiel 1991. Mature mRNA 3′ end formation stimulates RNA export from the nucleus. EMBO J. 10:3513–3522.
  • Furger, A., A. Schaller, and J. Schümperli 1998. Functional importance of conserved nucleotides at the histone RNA 3′ processing site. RNA 4:246–256.
  • Gallie, D. R., N. J. Lewis, and J. Marzluff 1996. The histone 3′-terminal stem-loop is necessary for translation in Chinese hamster ovary cells. Nucleic Acids Res. 24:1954–1962.
  • Georgiev, O., and J. Birnstiel 1985. The conserved CAAGAAAGA spacer sequence is an essential element for the formation of 3′ termini of the sea urchin H3 histone mRNA by RNA processing. EMBO J. 4:481–489.
  • Gick, O., A. Krämer, W. Keller, and J. Birnstiel 1986. Generation of histone mRNA 3′ ends by endonucleolytic cleavage of the pre-mRNA in a snRNP-dependent in vitro reaction. EMBO J. 5:1319–1326.
  • Gick, O., A. Krämer, A. Vasserot, and J. Birnstiel 1987. Heat-labile regulatory factor is required for 3′ processing of histone precursor mRNAs. Proc. Natl. Acad. Sci. USA 84:8937–8940.
  • Graves, R. A., S. E. Wellman, I.-M. Chiu, and J. Marzluff 1985. Differential expression of two clusters of mouse histone genes. J. Mol. Biol. 183:179–194.
  • Grimm, C., B. Stefanovic, and J. Schümperli 1993. The low abundance of U7 snRNA is partly determined by its Sm binding site. EMBO J. 12:1229–1238.
  • Hanson, R. J., J.-H. Sun, D. G. Willis, and J. Marzluff 1996. Efficient extraction and partial purification of the polyribosomal-associated stem-loop binding protein bound to the 3′ end of histone mRNA. Biochemistry 35:2146–2156.
  • Keller, W. 1995. No end yet to messenger RNA 3′ processing! Cell 81:829–832.
  • Li, J.-M., R. A. Parsons, and J. Marzluff 1994. Transcription of the sea urchin U6 gene in vitro requires a TATA-like box, a proximal sequence element, and sea urchin USF, which binds an essential E box. Mol. Cell. Biol. 14:2191–2200.
  • Liu, T.-J., B. J. Levine, A. I. Skoultchi, and J. Marzluff 1989. The efficiency of 3′-end formation contributes to the relative levels of different histone mRNAs. Mol. Cell. Biol. 9:3499–3508.
  • Manley, J. L. 1995. Messenger RNA polyadenylation: a universal modification. Proc. Natl. Acad. Sci. USA 92:1800–1801.
  • Martin, F., A. Schaller, S. Eglite, D. Schümperli, and J. Müller 1997. The gene for histone RNA hairpin binding protein is located on human chromosome 4 and encodes a novel type of RNA binding protein. EMBO J. 16:769–778.
  • Marzluff, W. F. 1992. Histone 3′ ends: essential and regulatory functions. Gene Expr. 2:93–97.
  • Marzluff, W. F., M. L. Whitfield, Z. Dominski, Z.-F. Wang 1997. Identification of the protein that interacts with the 3′ end of histone mRNA, p. 163–193. In J. D. Richter (ed.), mRNA formation and function. Academic Press, San Diego, Calif.
  • Melin, L., D. Soldati, R. Mital, A. Streit, and J. Schümperli 1992. Biochemical demonstration of complex formation of histone pre-mRNA with U7 small nuclear ribonucleoprotein and hairpin binding factors. EMBO J. 11:691–697.
  • Milligan, J. F., D. R. Groebe, G. W. Witherell, and J. Uhlenbeck 1987. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15:8783–8794.
  • Mowry, K. L., R. Oh, and J. Steitz 1989. Each of the conserved sequence elements flanking the cleavage site of mammalian histone pre-mRNAs has a distinct role in the 3′-end processing reaction. Mol. Cell. Biol. 9:3105–3108.
  • Mowry, K. L., and J. Steitz 1987. Both conserved signals on mammalian histone pre-mRNAs associate with small nuclear ribonucleoproteins during 3′ end formation in vitro. Mol. Cell. Biol. 7:1663–1672.
  • Mowry, K. L., and J. Steitz 1987. Identification of the human U7 snRNP as one of several factors involved in the 3′ end maturation of histone premessenger RNA’s. Science 238:1682–1687.
  • Pandey, N. B., and J. Marzluff 1987. The stem-loop structure at the 3′ end of histone mRNA is necessary and sufficient for regulation of histone mRNA stability. Mol. Cell. Biol. 7:4557–4559.
  • Pandey, N. B., J.-H. Sun, and J. Marzluff 1991. Different complexes are formed on the 3′ end of histone mRNA in nuclear and polysomal extracts. Nucleic Acids Res. 19:5653–5659.
  • Pandey, N. B., A. S. Williams, J.-H. Sun, V. D. Brown, U. Bond, and J. Marzluff 1994. Point mutations in the stem-loop at the 3′ end of mouse histone mRNA reduce expression by reducing the efficiency of 3′ end formation. Mol. Cell. Biol. 14:1709–1720.
  • Scharl, E. C., and J. Steitz 1994. The site of 3′ end formation of histone messenger RNA is a fixed distance from the downstream element recognized by the U7 snRNP. EMBO J. 13:2432–2440.
  • Scharl, E. C., and J. Steitz 1996. Length suppression in histone messenger RNA 3′-end maturation: processing defects of insertion mutant premessenger RNAs can be compensated by insertions into the U7 small nuclear RNA. Proc. Natl. Acad. Sci. USA 93:14659–14664.
  • SenGupta, D. J., B. L. Zhang, B. Kraemer, P. Prochart, S. Fields, and J. Wickens 1996. A three-hybrid system to detect RNA-protein interactions in vivo. Proc. Natl. Acad. Sci. USA 93:8496–8501.
  • Smith, H. O., K. Tabiti, G. Schaffner, D. Soldati, U. Albrecht, and J. Birnstiel 1991. Two-step affinity purification of U7 small nuclear ribonucleoprotein particles using complementary biotinylated 2′- O -methyl oligoribonucleotides. Proc. Natl. Acad. Sci. USA 88:9784–9788.
  • Soldati, D., and J. Schümperli 1988. Structural and functional characterization of mouse U7 small nuclear RNA active in 3′ processing of histone pre-mRNA. Mol. Cell. Biol. 8:1518–1524.
  • Spycher, C., A. Streit, B. Stefanovic, D. Albrecht, T. H. W. Koning, and J. Schümperli 1994. 3′ end processing of mouse histone pre-mRNA: evidence for additional base-pairing between U7 snRNA and pre-mRNA. Nucleic Acids Res. 22:4023–4030.
  • Stefanovic, B., W. Hackl, R. Lührmann, and J. Schümperli 1995. Assembly, nuclear import and function of U7 snRNPs studied by microinjection of synthetic U7 RNA into Xenopus oocytes. Nucleic Acids Res. 23:3141–3151.
  • Streit, A., T. W. Koning, D. Soldati, L. Melin, and J. Schümperli 1993. Variable effects of the conserved RNA hairpin element upon 3′ end processing of histone pre-mRNA in vitro. Nucleic Acids Res. 21:1569–1575.
  • Strub, K., G. Galli, M. Busslinger, and J. Birnstiel 1984. The cDNA sequences of the sea urchin U7 small nuclear RNA suggest specific contacts between histone mRNA precursor and U7 RNA during RNA processing. EMBO J. 3:2801–2807.
  • Sun, J.-H., D. R. Pilch, and J. Marzluff 1992. The histone mRNA 3′ end is required for localization of histone mRNA to polyribosomes. Nucleic Acids Res. 20:6057–6066.
  • Vasserot, A. P., F. J. Schaufele, and J. Birnstiel 1989. Conserved terminal hairpin sequences of histone mRNA precursors are not involved in duplex formation with the U7 RNA but act as a target site for a distinct processing factor. Proc. Natl. Acad. Sci. USA 86:4345–4349.
  • Wahle, E. 1995. 3′-end cleavage and polyadenylation of mRNA precursors. Biochim. Biophys. Acta Gene Struct. Expr. 1261:183–194.
  • Wang, Z.-F., T. C. Ingledue, Z. Dominski, R. Sanchez, and J. Marzluff 1999. Two Xenopus proteins that bind the 3′ end of histone mRNA: implications for translational control of histone synthesis during oogenesis. Mol. Cell. Biol. 19:835–845.
  • Wang, Z.-F., T. Krasikov, M. R. Frey, J. Wang, A. G. Matera, and J. Marzluff 1996. Characterization of the mouse histone gene cluster on chromosome 13: 45 histone genes in three patches spread over one megabase. Genome Res. 6:688–701.
  • Wang, Z.-F., M. L. Whitfield, T. I. Ingledue, Z. Dominski, and J. Marzluff 1996. The protein which binds the 3′ end of histone mRNA: a novel RNA-binding protein required for histone pre-mRNA processing. Genes Dev. 10:3028–3040.
  • Williams, A. S., T. C. Ingledue, B. K. Kay, and J. Marzluff 1994. Changes in the stem-loop at the 3′ terminus of histone mRNA affects its nucleocytoplasmic transport and cytoplasmic regulation. Nucleic Acids Res. 22:4660–4666.
  • Williams, A. S., and J. Marzluff 1995. The sequence of the stem and flanking sequences at the 3′ end of histone mRNA are critical determinants for the binding of the stem-loop binding protein. Nucleic Acids Res. 23:654–662.
  • Wu, C.-H. H., and J. Gall 1993. U7 small nuclear RNA in C snurposomes of the Xenopus germinal vesicle. Proc. Natl. Acad. Sci. USA 90:6257–6259.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.