40
Views
152
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Rho3 of Saccharomyces cerevisiae, Which Regulates the Actin Cytoskeleton and Exocytosis, Is a GTPase Which Interacts with Myo2 and Exo70

, , , , &
Pages 3580-3587 | Received 03 Dec 1998, Accepted 08 Feb 1999, Published online: 28 Mar 2023

REFERENCES

  • Adams, A. E., D. I. Johnson, R. M. Longnecker, B. F. Sloat, and J. Pringle 1990. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J. Cell Biol. 111:131–142.
  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and J. Lipman 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.
  • Amano, M., H. Mukai, Y. Ono, K. Chihara, T. Matsui, Y. Hamajima, K. Okawa, A. Iwamatsu, and J. Kaibuchi 1996. Identification of a putative target for Rho as the serine-threonine kinase protein kinase N. Science 271:648–650.
  • Bartel, P. L. 1993. Using the two-hybrid system to detect protein-protein interactions, p. 153–179. In D. A. Hartley (ed.), Cellular interactions in development: a practical approach. Oxford University Press, Oxford, England.
  • Bourne, H. R., D. A. Sanders, and J. McCormick 1991. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127.
  • Chant, J. 1996. Generation of cell polarity in yeast. Curr. Opin. Cell Biol. 8:557–565.
  • Chant, J., and J. Pringle 1991. Budding and cell polarity in Saccharomyces cerevisiae. Curr. Opin. Genet. Dev. 1:342–350.
  • Chien, C.-T., P. L. Bartel, R. Sternglanz, and J. Fields 1991. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88:9578–9582.
  • Cohen, L., R. Mohr, Y.-Y. Chen, M. Huang, R. Kato, D. Dorin, F. Tamanoi, A. Goga, D. Afar, N. Rosenberg, and J. Witte 1994. Transcriptional activation of a ras-like gene (kir) by oncogenic tyrosine kinases. Proc. Natl. Acad. Sci. USA 91:12448–12452.
  • Der, C. J., B.-T. Pan, and J. Cooper 1986. rasH mutants deficient in GTP binding. Mol. Cell. Biol. 6:3291–3294.
  • Drgonova, J., T. Drgon, K. Tanaka, R. Kollar, G. C. Chen, R. A. Ford, C. S. M. Chan, Y. Takai, and J. Cabib 1996. Rho1p, a yeast protein at the interface between cell polarization and morphogenesis. Science 272:277–279.
  • Drubin, D. G. 1991. Development of cell polarity in budding yeast. Cell 65:1093–1096.
  • Durfee, T., K. Becherer, P.-L. Chen, S.-H. Yeh, Y. Yang, A. E. Kilburn, W.-H. Lee, and J. Elledge 1993. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7:555–569.
  • Espindola, F. S., E. M. Espreafico, M. V. Coelho, A. R. Martins, F. R. Costa, M. S. Mooseker, and J. Larson 1992. Biochemical and immunological characterization of p190-calmodulin complex from vertebrate brain: a novel calmodulin-binding myosin. J. Cell Biol. 118:359–368.
  • Ferro-Novick, S., and J. Jahn 1994. Vesicle fusion from yeast to man. Nature 370:191–193.
  • Gietz, D., A. St. Jean, R. A. Woods, and J. Schiestl 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20:1425.
  • Goud, B., A. Salminen, N. C. Walworth, and J. Novick 1988. A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53:753–768.
  • Govindan, B., R. Bowser, and J. Novick 1995. The role of Myo2, a yeast class V myosin, in vesicular transport. J. Cell Biol. 128:1055–1068.
  • Gyuris, J., E. Golemis, H. Chertkov, and J. Brent 1993. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75:791–803.
  • Herskowitz, I. 1997. Building organs and organisms: elements of morphogenesis exhibited by budding yeast. Cold Spring Harbor Symp. Quant. Biol. 62:57–63.
  • Herskowitz, I., H. O. Park, S. Sanders, N. Valtz, and J. Peter 1995. Programming of cell polarity in budding yeast by endogenous and exogenous signals. Cold Spring Harbor Symp. Quant. Biol. 60:717–727.
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and J. Pease 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59.
  • Imai, J., A. Toh-e, and J. Matsui 1996. Genetic analysis of the Saccharomyces cerevisiae RHO3 gene, encoding a rho-type small GTPase, provides evidence for a role in bud formation. Genetics 142:359–369.
  • Imamura, H., K. Tanaka, T. Hihara, M. Umikawa, T. Kamei, K. Takahashi, T. Sasaki, and J. Takai 1997. Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J. 16:2745–2755.
  • Johnson, D. I., and J. Pringle 1990. Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J. Cell Biol. 111:143–152.
  • Johnston, G. C., J. A. Prendergast, and J. Singer 1991. The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles. J. Cell Biol. 113:539–551.
  • Kamada, Y., H. Qadota, C. P. Python, Y. Anraku, Y. Ohya, and J. Levin 1996. Activation of yeast protein kinase C by Rho1 GTPase. J. Biol. Chem. 271:9193–9196.
  • Kilmartin, J. V., and J. Adams 1984. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J. Cell Biol. 98:922–933.
  • Kimura, K., M. Ito, M. Amano, K. Chihara, Y. Fukata, M. Nakafuku, B. Yamamori, J. Feng, T. Nakano, K. Okawa, A. Iwamatsu, and J. Kaibuchi 1996. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273:245–248.
  • Kohno, H., K. Tanaka, A. Mino, M. Umikawa, H. Imamura, T. Fujiwara, Y. Fujita, K. Hotta, H. Qadota, T. Watanabe, Y. Ohya, and J. Takai 1996. Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J. 15:6060–6068.
  • Li, L., S. J. Elledge, C. A. Peterson, E. S. Bales, and J. Legerski 1994. Specific association between the human DNA repair proteins XPA and ERCC1. Proc. Natl. Acad. Sci. USA 91:5012–5016.
  • Li, R., Y. Zheng, and J. Drubin 1995. Regulation of cortical actin cytoskeleton assembly during polarized cell growth in budding yeast. J. Cell Biol. 128:599–615.
  • Madaule, P., R. Axel, and J. Myers 1987. Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 84:779–783.
  • Maguire, J., T. Santoro, P. Jensen, U. Siebenlist, J. Yewdell, and J. Kelly 1994. Gem: an induced, immediate early protein belonging to the Ras family. Science 265:241–244.
  • Mata, J., and J. Nurse 1998. Discovering the poles in yeast. Trends Cell Biol. 8:163–167.
  • Matsui, Y., and J. Toh-e 1992. Isolation and characterization of two novel ras superfamily genes in Saccharomyces cerevisiae. Gene 114:43–49.
  • Matsui, Y., and J. Toh-e 1992. Yeast RHO3 and RHO4 ras superfamily genes are necessary for bud growth, and their defect is suppressed by a high dose of bud formation genes CDC42 and BEM1. Mol. Cell. Biol. 12:5690–5699.
  • Matsui, Y., R. Matsui, R. Akada, and J. Toh-e 1996. Yeast src homology region 3 domain-binding proteins involved in bud formation. J. Cell Biol. 133:865–878.
  • Mercer, J. A., P. K. Seperack, M. C. Strobel, N. G. Copeland, and J. Jenkins 1991. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349:709–713.
  • Mermall, V., P. L. Post, and J. Mooseker 1998. Unconventional myosins in cell movement, membrane traffic and signal transduction. Science 279:527–533.
  • Morcos, P., N. Thapar, N. Tusneem, D. Stacey, and J. Tamanoi 1996. Identification of neurofibromin mutants that exhibit allele specificity or increased Ras affinity resulting in suppression of activated ras alleles. Mol. Cell. Biol. 16:2496–2503.
  • Mulholland, J., D. Preuss, A. Moon, A. Wong, D. Drubin, and J. Botstein 1994. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J. Cell Biol. 125:381–391.
  • Nonaka, H., K. Tanaka, H. Hirano, T. Fujiwara, H. Kohno, M. Umikawa, A. Mino, and J. Takai 1995. A downstream target of RHO1 small GTP-binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. EMBO J. 14:5931–5938.
  • Poullet, P., and J. Tamanoi 1995. Use of yeast two-hybrid system to evaluate Ras interactions with neurofibromin-GTPase-activating protein. Methods Enzymol. 255:488–497.
  • Pringle, J. R., R. A. Preston, A. E. Adams, T. Stearns, D. G. Drubin, B. K. Haarer, and J. Jones 1989. Fluorescence microscopy methods for yeast. Methods Cell. Biol. 31:357–435.
  • Qadota, H., C. P. Python, S. Inoue, M. Arisawa, Y. Anraku, Y. Zheng, T. Watanabe, D. E. Levin, and J. Ohya 1996. Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-β-glucan synthase. Science 272:279–281.
  • Reynet, C., and J. Kahn 1993. Rad: a member of the Ras family overexpressed in muscle type II diabetic humans. Science 262:1441–1444.
  • Salminen, A., and J. Novick 1987. A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 49:527–538.
  • Sambrook, J., E. F. Fritsch, T. Maniatis 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Seeburg, P. H., W. W. Colby, D. J. Capon, D. V. Goeddel, and J. Levinson 1984. Biological properties of human c-Ha-ras1 genes mutated at codon 12. Nature 312:71–75.
  • Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194:3–21.
  • Smith, D. B., and J. Johnson 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40.
  • TerBush, D. R., T. Maurice, D. Roth, and J. Novick 1996. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15:6483–6494.
  • TerBush, D. R., and J. Novick 1995. Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J. Cell Biol. 130:299–312.
  • Titus, M. A. 1993. From fat yeast and nervous mice to brain myosin-V. Cell 75:9–11.
  • Titus, M. A. 1997. Motor proteins: myosin V—the multi-purpose transport motor. Curr. Biol. 7:R301–R304.
  • Urano, J., and F. Tamanoi. Reconstitution of yeast farnesyltransferase from individually purified subunits. In M. Gelb (ed.), Protein lipidation protocols, in press. Humana Press, Totowa, N.J.
  • Van Aelst, L., M. Barr, S. Marcus, A. Polverino, and J. Wigler 1993. Complex formation between RAS and RAF and other protein kinases. Proc. Natl. Acad. Sci. USA 90:6213–6217.
  • Watanabe, G., Y. Saito, P. Madaule, T. Ishizaki, K. Fujisawa, N. Morii, H. Mukai, Y. Ono, A. Kakizuka, and J. Narumiya 1996. Protein kinase N (PKN) and PKN-related protein rhophilin as targets of small GTPase Rho. Science 271:645–648.
  • Xu, G. F., B. Lin, K. Tanaka, D. Dunn, D. Wood, R. Gesteland, R. White, and J. Tamanoi 1990. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63:835–841.
  • Yamochi, W., K. Tanaka, H. Nonaka, A. Maeda, T. Musha, and J. Takai 1994. Growth site localization of Rho1 small GTP-binding protein and its involvement in bud formation in Saccharomyces cerevisiae. J. Cell Biol. 125:1077–1093.
  • Zhang, X. F., M. S. Marshall, and J. Avruch 1995. Ras-Raf complexes in vitro. Methods Enzymol. 255:323–331.
  • Zheng, Y., M. F. Olson, A. Hall, R. A. Cerione, and J. Toksoz 1995. Direct involvement of the small GTP-binding protein Rho in lbc oncogene function. J. Biol. Chem. 270:9031–9034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.