17
Views
100
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Structural Motifs Involved in Ubiquitin-Mediated Processing of the NF-κB Precursor p105: Roles of the Glycine-Rich Region and a Downstream Ubiquitination Domain

, , , , &
Pages 3664-3673 | Received 01 Sep 1998, Accepted 10 Feb 1999, Published online: 28 Mar 2023

REFERENCES

  • Abu-Hatoum, O., S. Gross-Mesilaty, K. Breitschopf, A. Hoffman, H. Gonen, A. Ciechanover, and J. Bengal 1998. Degradation of the myogenic transcription factor MyoD by the ubiquitin pathway in vivo and in vitro: regulation by specific DNA binding. Mol. Cell. Biol. 18:5670–5677.
  • Alkalay, I., A. Yaron, A. Hatzubai, A. Orian, A. Ciechanover, and J. Ben Neriah 1995. Stimulation-dependent IκBα phosphorylation marks the NF-κB inhibitor for degradation via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 92:10599–10603.
  • Baeuerle, P. A., and J. Baltimore 1996. NF-κB: ten years after. Cell 87:13–20.
  • Baldwin, A. S. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–683.
  • Betts, J. C., and J. Nabel 1996. Differential regulation of NF-κB2 (p100) processing and control by amino-terminal sequences. Mol. Cell. Biol. 16:6363–6371.
  • Blank, V., P. Kourilsky, and J. Israël 1991. Cytoplasmic retention, DNA binding, and processing of the NF-κB precursor, are controlled by a small region in its C-terminus. EMBO J. 10:4159–4167.
  • Blank, V., P. Kourilsky, and J. Israël 1992. NF-κB and related proteins: Rel/dorsal homologies meet ankyrin-like repeats. Trends Biochem. Sci. 17:135–140.
  • Brown, K., S. Gerstberger, L. Carlson, G. Franzoso, and J. Siebenlist 1995. Control of IκBα proteolysis by site specific signal-induced phosphorylation. Science 267:1485–1488.
  • Chen, Z., J. Hagler, V. Palombella, F. Melandri, D. Scherer, D. Ballard, and J. Maniatis 1995. Signal-induced site-specific phosphorylation targets IκBα to ubiquitin-proteasome pathway. Genes Dev. 9:1586–1597.
  • Ciechanover, A., D. Shkedy, M. Oren, and J. Bercovich 1994. Degradation of the tumor suppressor protein p53 by the ubiquitin-mediated proteolytic system requires a novel species of ubiquitin-carrier protein, E2. J. Biol. Chem. 269:9582–9589.
  • Coux, O., and J. Goldberg 1998. Enzymes catalyzing ubiquitination and proteolytic processing of the p105 precursor of nuclear factor κB1. J. Biol. Chem. 273:8820–8828.
  • Coux, O., K. Tanaka, and J. Goldberg 1996. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65:801–847.
  • Dushay, M. S., B. Åsling, and J. Hultmark 1996. Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc. Natl. Acad. Sci. USA 93:10343–10347.
  • Fan, C. M., and J. Maniatis 1991. Generation of the p50 subunit of NF-κB by processing of p105 through an ATP-dependent pathway. Nature 354:395–398.
  • Fujimoto, K., H. Yasuda, Y. Sato, and J. Yamamoto 1995. A role for phosphorylation in the proteolytic processing of the human NF-κB1 precursor. Gene 165:183–189.
  • Geisler, R., A. Bergmann, Y. Hiromi, and J. Nusslein-Volhard 1992. Cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the IκB gene family of vertebrates. Cell 71:613–621.
  • Ghosh, S., M. J. May, and J. Kopp 1998. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16:225–260.
  • Guan, J.-L., and J. Rose 1984. Conversion of a secretory protein into a transmembrane protein results in its transport to the Golgi complex but not to the cell surface. Cell 37:779–787.
  • Hall, C. V., P. E. Jacob, G. M. Ringold, and J. Lee 1983. Expression and regulation of Escherichia coli lacZ gene fusions in mammalian cells. J. Mol. Appl. Genet. 2:101–109.
  • Henkel, T., U. Zabel, K. van Zee, J. M. Müller, E. Fanning, and J. Baeuerle 1992. Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-κB subunit. Cell 68:1121–1133.
  • Hershko, A., and J. Ciechanover 1998. The ubiquitin system. Annu. Rev. Biochem. 67:425–479.
  • Hershko, A., and J. Rose 1987. Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes. Proc. Natl. Acad. Sci. USA 84:1829–1833.
  • Hochstrasser, M. 1996. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30:405–439.
  • Latimer, M., M. K. Ernst, L. L. Dunn, M. Drutskaya, and J. Rice 1998. The N-terminal domain of IκBα masks the nuclear localization signal(s) of p50 and c-Rel homodimers. Mol. Cell. Biol. 18:2640–2649.
  • Levitskaya, J., A. Sharipo, A. Leonchiks, A. Ciechanover, and J. Masucci 1997. Inhibition of ubiquitin-proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen (EBNA)-1. Proc. Natl. Acad. Sci. USA 94:12616–12621.
  • Lin, L., G. N. DeMartino, and J. Greene 1998. Cotranslational biogenesis of NF-κB p50 by the 20S proteasome. Cell 92:819–828.
  • Lin, L., and J. Ghosh 1996. A glycine-rich region in NF-κB p105 functions as a processing signal for the generation of the p50 subunit. Mol. Cell. Biol. 16:2248–2254.
  • MacKichan, M. L., F. Logeat, and J. Israël 1996. Phosphorylation of p105 PEST sequence via a redox-insensitive pathway up-regulates processing of p50 NF-κB. J. Biol. Chem. 271:6084–6091.
  • Mamroud-Kidron, E., M. Omer-Itsicovich, Z. Bercovich, K. E. Tobias, E. Rom, and J. Kahana 1994. A unified pathway for the degradation of ornithine decarboxylase in reticulocyte lysate requires interaction with the polyamine-induced protein, ornithine decarboxylase antizyme. Eur. J. Biochem. 226:547–554.
  • Mercurio, F., H. Zhu, B. W. Murray, A. Shevchenko, B. L. Bennett, J. Li, D. B. Young, M. Barbosa, M. Mann, A. Manning, and J. Rao 1997. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278:860–866.
  • Murakami, Y., S. Matsufuji, T. Kameji, S.-I. Hayashi, K. Igarashi, T. Tamura, K. Tanaka, and J. Ichihara 1992. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360:597–599.
  • Orian, A., S. Whiteside, A. Israël, I. Stancovski, A. L. Schwartz, and J. Ciechanover 1995. Ubiquitin-mediated processing of NF-κB transcriptional activator precursor p105: reconstitution of a cell-free system and identification of the ubiquitin-carrier protein, E2, and a novel ubiquitin-protein ligase, E3, involved in conjugation. J. Biol. Chem. 270:21707–21714.
  • Palombella, V., O. Rando, A. Goldberg, and J. Maniatis 1994. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78:773–785.
  • Rubinfeld, B., P. Robbins, M. El-Gamil, I. Albert, E. Porfiri, and J. Polakis 1997. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275:1790–1792.
  • Sakai, J., R. B. Rawson, P. J. Espenshade, D. Cheng, A. C. Seegmiller, J. L. Goldstein, and J. Brown 1998. Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol. Cell 2:505–514.
  • Scherer, D. C., J. A. Brockman, Z. Chen, T. Maniatis, and J. Ballard 1995. Signal induced degradation of IκBα requires site-specific ubiquitination. Proc. Natl. Acad. Sci. USA 92:11259–11263.
  • Sears, C., J. Olesen, D. Rubin, D. Finley, and J. Maniatis 1997. NF-κB p105 processing via the ubiquitin-proteasome pathway. J. Biol. Chem. 273:1409–1419.
  • Sharipo, A., M. Imreh, A. Leonchiks, S. Imreh, and J. Masucci 1998. A minimal glycine-alanine repeat prevents the interaction of ubiquitinated IκBα with the proteasome: a new mechanism for selective inhibition of proteolysis. Nat. Med. 4:939–944.
  • Stancovski, I., H. Gonen, A. Orian, A. L. Schwartz, and J. Ciechanover 1995. Degradation of the proto-oncogene product c-Fos by the ubiquitin proteolytic system in vivo and in vitro: identification and characterization of the conjugating enzymes. Mol. Cell. Biol. 15:7106–7116.
  • Wang, X., R. Sato, M. S. Brown, X. Hua, and J. Goldstein 1994. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77:53–62.
  • Winston, J. T., P. Strack, P. Beer-Romero, C. Y. Chu, S. J. Elledge, and J. Harper 1999. The SCF β-TrCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13:270–283.
  • Woronicz, J. D., X. Gao, Z. Cao, M. Rothe, and J. Goeddel 1997. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. 1997. Science 278:866–869.
  • Yaron, A., A. Hatzubai, M. Davis, I. Lavon, S. Amit, A. M. Manning, J. S. Andersen, M. Mann, F. Mercurio, and J. Ben-Neriah 1998. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396:590–594.
  • Zandi, E., D. M. Rothwarf, M. Delhase, M. Hayakawa, and J. Karin 1997. The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell 91:243–252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.