24
Views
61
CrossRef citations to date
0
Altmetric
Gene Expression

The Activity of Mammalian brm/SNF2α Is Dependent on a High-Mobility-Group Protein I/Y-Like DNA Binding Domain

, &
Pages 3931-3939 | Received 02 Dec 1998, Accepted 26 Feb 1999, Published online: 27 Mar 2023

REFERENCES

  • Archer, T. K., P. Lefebvre, R. G. Wolford, and J. Hager 1992. Transcription factor loading on the MMTV promoter: a bimodal mechanism for promoter activation. Science 255:1573–1576.
  • Armstrong, J. A., J. J. Bieker, and J. Emerson 1998. A Swi/Snf-related chromatin remodeling complex, E-Rc1, is required for tissue-specific transcriptional regulation by Eklf in vitro. Cell 95:93–104.
  • Ashley, C. T., C. G. Pendleton, W. W. Jennings, A. Saxena, and J. Glover 1989. Isolation and sequencing of cDNA clones encoding Drosophila chromosomal protein D1. A repeating motif in proteins which recognize at DNA. J. Biol. Chem. 264:8394–8401.
  • Bustin, M., and J. Reeves 1996. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog. Nucleic Acid Res. Mol. Biol. 54:35–100.
  • Cairns, B. R. 1998. Chromatin remodeling machines: similar motors, ulterior motives. Trends Biochem. Sci. 23:20–25.
  • Cairns, B. R., Y. Lorch, Y. Li, M. Zhang, L. Lacomis, H. Erdjument-Bromage, P. Tempst, J. Du, B. Laurent, and J. Kornberg 1996. RSC, an essential, abundant chromatin-remodeling complex. Cell 87:1249–1260.
  • Cato, A. C., P. Skroch, J. Weinmann, P. Butkeraitis, and J. Ponta 1988. DNA sequences outside the receptor-binding sites differently modulate the responsiveness of the mouse mammary tumour virus promoter to various steroid hormones. EMBO J. 7:1403–1410.
  • Chiba, H., M. Muramatsu, A. Nomoto, and J. Kato 1994. Two human homologues of Saccharomyces cerevisiae SWI2/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor. Nucleic Acids Res. 22:1815–1820.
  • Delmas, V., D. G. Stokes, and J. Perry 1993. A mammalian DNA-binding protein that contains a chromodomain and an SNF2/SWI2-like helicase domain. Proc. Natl. Acad. Sci. USA 90:2414–2418.
  • Dingwall, C., and J. Laskey 1991. Nuclear targeting sequences—a consensus? Trends Biochem. Sci. 16:478–481.
  • Du, W., D. Thanos, and J. Maniatis 1993. Mechanisms of transcriptional synergism between distinct virus-inducible enhancer elements. Cell 74:887–898.
  • Dunaief, J. L., B. E. Strober, S. Guha, P. A. Khavari, K. Ålin, J. Luban, M. Begemann, G. R. Crabtree, and J. Goff 1994. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79:119–130.
  • Falvo, J. V., D. Thanos, and J. Maniatis 1995. Reversal of intrinsic DNA bends in the IFN beta gene enhancer by transcription factors and the architectural protein HMG I(Y). Cell 83:1101–1111.
  • Godowski, P. J., S. Rusconi, R. Miesfeld, and J. Yamamoto 1987. Glucocorticoid receptor mutants that are constitutive activators of transcriptional enhancement. Nature 325:365–368.
  • Grosschedl, R., K. Giese, and J. Pagel 1994. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 10:94–100.
  • Haynes, S. R., C. Dollard, F. Winston, S. Beck, J. Trowsdale, and J. Dawid 1992. The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res. 20:2603.
  • He, D. C., J. A. Nickerson, and J. Penman 1990. Core filaments of the nuclear matrix. J. Cell Biol. 110:569–580.
  • Hirschhorn, J. N., S. A. Brown, C. D. Clark, and J. Winston 1992. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6:2288–2298.
  • Huth, J. R., C. A. Bewley, M. S. Nissen, J. N. Evans, R. Reeves, A. M. Gronenborn, and J. Clore 1997. The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Nat. Struct. Biol. 4:657–665.
  • Ichinose, H., J. M. Garnier, P. Chambon, and J. Losson 1997. Ligand-dependent interaction between the estrogen receptor and the human homologues of SWI2/SNF2. Gene 188:95–100.
  • Ito, T., M. Bulger, M. J. Pazin, R. Kobayashi, and J. Kadonaga 1997. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90:145–155.
  • Ito, T., J. K. Tyler, and J. Kadonaga 1997. Chromatin assembly factors: a dual function in nucleosome formation and mobilization? Genes Cells 2:593–600.
  • Jeanmougin, F., J. M. Wurtz, B. Le Douarin, P. Chambon, and J. Losson 1997. The bromodomain revisited. Trends Biochem. Sci. 22:151–153.
  • Kadonaga, J. T. 1998. Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92:307–313.
  • Khavari, P. A., C. L. Peterson, J. W. Tamkun, D. B. Mendel, and J. Crabtree 1993. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366:170–174.
  • Lee, H. L., and J. Archer 1994. Nucleosome-mediated disruption of transcription factor-chromatin initiation complexes at the mouse mammary tumor virus long terminal repeat in vivo. Mol. Cell. Biol. 14:32–41.
  • LeGouy, E., E. M. Thompson, C. Muchardt, and J. Renard 1998. Differential preimplantation regulation of two mouse homologues of the yeast SWI2 protein. Dev. Dyn. 212:38–48.
  • Marty, L., P. Roux, M. Royer, and J. Piechaczyk 1990. MoMuLV-derived self-inactivating retroviral vectors possessing multiple cloning sites and expressing the resistance to either G418 or hygromycin B. Biochimie 72:885–887.
  • Muchardt, C., B. Bourachot, J.-C. Reyes, and J. Yaniv 1998. ras transformation is associated with decreased expression of the brm/SNF2alpha ATPase from the mammalian SWI-SNF complex. EMBO J. 17:223–231.
  • Muchardt, C., J. C. Reyes, B. Bourachot, E. Legouy, and J. Yaniv 1996. The hbrm and BRG-1 proteins, components of the human SNF/SWI complex, are phosphorylated and excluded from the condensed chromosomes during mitosis. EMBO J. 15:3394–3402.
  • Muchardt, C., C. Sardet, B. Bourachot, C. Onufryk, and J. Yaniv 1995. A human protein with homology to S. cerevisiae SNF5 interacts with the potential helicase hbrm. Nucleic Acids Res. 23:1127–1132.
  • Muchardt, C., J. S. Seeler, and J. Gaynor 1992. Regulation of HTLV-I gene expression by tax and AP-2. New Biol. 4:541–550.
  • Muchardt, C., and J. Yaniv 1993. A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 12:4279–4290.
  • Muchardt, C. Unpublished data.
  • Pazin, M. J., and J. Kadonaga 1997. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell 88:737–740.
  • Peterson, C. L., and J. Herskowitz 1992. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68:573–583.
  • Pfarr, C. M., F. Mechta, G. Spyrou, D. Lallemand, S. Carillo, and J. Yaniv 1994. Mouse JunD negatively regulates fibroblast growth and antagonizes transformation by ras. Cell 76:747–760.
  • Quinn, J., A. M. Fyrberg, R. W. Ganster, M. C. Schmidt, and J. Peterson 1996. DNA-binding properties of the yeast SWI/SNF complex. Nature 379:844–847.
  • Reyes, J. C., J. Barra, C. Muchardt, A. Camus, C. Babinet, and J. Yaniv 1998. Altered control of cellular proliferation in the absence of mammalian brahma (SNF2α). EMBO J. 17:6979–6991.
  • Reyes, J. C., C. Muchardt, and J. Yaniv 1997. Components of the human SWI/SNF complex are enriched in active chromatin and are associated with the nuclear matrix. J. Cell Biol. 137:263–274.
  • Rose, S. M., and J. Garrard 1984. Differentiation-dependent chromatin alterations precede and accompany transcription of immunoglobulin light chain genes. J. Biol. Chem. 259:8534–8544.
  • Shanahan, F., W. Seghezzi, D. Parry, D. Mahony, and J. Lees 1999. Cyclin E associates with BAF155 and BRG1, components of the mammalian SWI-SNF complex, and alters the ability of BRG1 to induce growth arrest. Mol. Cell. Biol. 19:1460–1469.
  • Sif, S., P. T. Stukenberg, M. W. Kirschner, and J. Kingston 1998. Mitotic inactivation of a human SWI/SNF chromatin remodeling complex. Genes Dev. 12:2842–2851.
  • Singh, P., J. Coe, and J. Hong 1995. A role for retinoblastoma protein in potentiating transcriptional activation by the glucocorticoid receptor. Nature 374:562–565.
  • Slany, R. K., C. Lavau, and J. Cleary 1998. The oncogenic capacity of HRX-ENL requires the transcriptional transactivation activity of ENL and the DNA binding motifs of HRX. Mol. Cell. Biol. 18:122–129.
  • Stokes, D. G., and J. Perry 1995. DNA-binding and chromatin localization properties of CHD1. Mol. Cell. Biol. 15:2745–2753.
  • Stokes, D. G., K. D. Tartof, and J. Perry 1996. CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes. Proc. Natl. Acad. Sci. USA 93:7137–7142.
  • Strober, B. E., J. L. Dunaief, S. Guha, and J. Goff 1996. Functional interaction between the hBRM/hBRG-1 transcriptional activators and the pRB family of proteins. Mol. Cell. Biol. 16:1576–1583.
  • Thanos, D., and J. Maniatis 1992. The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell 71:777–789.
  • Tong, J. K., C. A. Hassig, G. R. Schnitzler, R. E. Kingston, and J. Schreiber 1998. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395:917–921.
  • Trouche, D., C. Le Chalony, C. Muchardt, M. Yaniv, and J. Kouzarides 1997. Rb and hbrm co-operate to repress the activation functions of E2F1. Proc. Natl. Acad. Sci. USA 94:11268–11273.
  • Tsukiyama, T., C. Daniel, J. Tamkun, and J. Wu 1995. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 83:1021–1026.
  • Tsukiyama, T., and J. Wu 1995. Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83:1011–1020.
  • Varga-Weisz, P. D., and J. Becker 1998. Chromatin-remodeling factors: machines that regulate? Curr. Opin. Cell Biol. 10:346–353.
  • Varga-Weisz, P. D., M. Wilm, E. Bonte, K. Dumas, M. Mann, and J. Becker 1997. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase. Nature 388:598–602.
  • Wade, P. A., P. L. Jones, D. Vermaak, and J. Wolffe 1998. A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr. Biol. 8:843–846.
  • Wang, W., T. Chi, Y. Xue, S. Zhou, A. Kuo, and J. Crabtree 1998. Architectural DNA binding by a high-mobility-group/kinesin-like subunit in mammalian SWI/SNF-related complexes. Proc. Natl. Acad. Sci. USA 95:492–498.
  • Wang, W., J. Cote, Y. Xue, S. Zhou, P. A. Khavari, S. R. Biggar, C. Muchardt, G. V. Kalpana, S. P. Goff, M. Yaniv, J. L. Workman, and J. Crabtree 1996. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15:5370–5382.
  • Wolffe, A. P., J. Wong, and J. Pruss 1997. Activators and repressors: making use of chromatin to regulate transcription. Genes Cells 2:291–302.
  • Woodage, T., M. A. Basrai, A. D. Baxevanis, P. Hieter, and J. Collins 1997. Characterization of the CHD family of proteins. Proc. Natl. Acad. Sci. USA 94:11472–11477.
  • Yoneda, Y. 1997. How proteins are transported from cytoplasm to the nucleus. J. Biochem. 121:811–817.
  • Zhang, Y., G. LeRoy, H. P. Seelig, W. S. Lane, and J. Reinberg 1998. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95:279–289.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.