7
Views
9
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Separation and Characterization of the Activated Pool of Colony-Stimulating Factor 1 Receptor Forming Distinct Multimeric Complexes with Signalling Molecules in Macrophages

, , &
Pages 4079-4092 | Received 11 Aug 1998, Accepted 03 Mar 1999, Published online: 27 Mar 2023

REFERENCES

  • Allen, W. E., G. E. Jones, J. W. Pollard, and J. Ridley 1997. Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages. J. Cell Sci. 110:707–720.
  • Alonso, G., M. Koegl, N. Mazurenko, and J. Courtneidge 1995. Sequence requirements for binding of Src family tyrosine kinases to activated growth factor receptors. J. Biol. Chem. 270:9840–9848.
  • Baccarini, M., D. M. Sabatini, H. App, U. R. Rapp, and J. Stanley 1990. Colony stimulating factor-1 (CSF-1) stimulates temperature dependent phosphorylation and activation of the Raf-1 proto-oncogene product. EMBO J. 9:3649–3657.
  • Bohuslav, J., V. Horejsi, C. Hansmann, J. Stockl, U. H. Weidle, O. Majdic, I. Bartke, W. Knapp, and J. Stockinger 1995. Urokinase plasminogen activator receptor, β2-integrins, and Src-kinases within a single receptor complex of human monocytes. J. Exp. Med. 181:1381–1390.
  • Boocock, C. A., G. E. Jones, E. R. Stanley, and J. Pollard 1989. Colony-stimulating factor-1 induces rapid behavioural responses in the mouse macrophage cell line, BAC1.2F5. J. Cell Sci. 93:447–456.
  • Bourette, R. P., G. M. Myles, K. Carlberg, A. R. Chen, and J. Rohrschneider 1995. Uncoupling of the proliferation and differentiation signals mediated by the murine macrophage colony-stimulating factor receptor expressed in myeloid FDC-P1 cells. Cell Growth Differ. 6:631–645.
  • Bourette, R. P., G. M. Myles, J.-L. Choi, and J. Rohrschneider 1997. Sequential activation of phosphatidylinositol 3-kinase and phospholipase C-γ2 by the M-CSF receptor is necessary for differentiation signaling. EMBO J. 16:5880–5893.
  • Chen, B. D.-M., C. Kuhn III, and J. Lin 1984. Receptor-mediated binding and internalization of colony-stimulating factor (CSF-1) by mouse peritoneal exudate macrophages. J. Cell Sci. 70:147–166.
  • Chen, H. E., S. Chang, T. Trub, and J. Neel 1996. Regulation of colony-stimulating factor 1 receptor signaling by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol. Cell. Biol. 16:3685–3697.
  • Courneidge, S. A., R. Dhand, D. Pilat, G. M. Twamley, M. D. Waterfield, and J. Roussel 1993. Activation of Src family kinases by colony stimulating factor-1, and their association with its receptor. EMBO J. 12:943–950.
  • Di Guglielmo, G. M., P. C. Baass, W. J. Ou, B. I. Posner, and J. Bergeron 1994. Compartmentalization of Shc, Grb2 and mSos, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J. 13:4269–4277.
  • Downing, J. R., B. L. Margolis, A. Zilberstein, R. A. Ashmun, A. Ullrich, C. J. Sherr, and J. Schlessinger 1989. Phospholipase C-gamma, a substrate for PDGF receptor kinase, is not phosphorylated on tyrosine during the mitogenic response to CSF-1. EMBO J. 8:3345–3350.
  • Downing, J. R., C. W. Rettenmier, and J. Sherr 1988. Ligand-induced tyrosine kinase activity of colony-stimulating factor-1 receptor in murine macrophage cell line. Mol. Cell. Biol. 8:1795–1799.
  • Ganju, R. K., W. C. Hatch, H. Avraham, M. A. Ona, B. Druker, S. Avraham, and J. Groopman 1997. RAFTK, a novel member of the focal adhesion kinase family, is phosphorylated and associates with signaling molecules upon activation of mature T lymphocytes. J. Exp. Med. 185:1055–1063.
  • Guilbert, L. J., and J. Stanley 1986. The interaction of 125I-colony-stimulating factor-1 with bone marrow-derived macrophages. J. Biol. Chem. 261:4024–4032.
  • Hamilton, J. A., R. Byrne, G. Whitty, P. K. Vadiveloo, N. Marmy, R. B. Pearson, E. Christy, and J. Jaworowski 1998. Effects of wortmannin and rapamycin on CSF-1-mediated responses in macrophages. Int. J. Biochem. Cell Biol. 30:271–283.
  • Hatch, W. C., R. K. Ganju, D. Hiregowdara, S. Avraham, and J. Groopman 1998. The related adhesion focal tyrosine kinase (RAFTK) is tyrosine phosphorylated and participates in colony-stimulating factor-1/macrophage colony-stimulating factor signaling in monocyte-macrophages. Blood 91:3967–3973.
  • Herskowitz, I. 1995. MAP kinase pathways in yeast: for mating and more. Cell 80:187–197.
  • Husson, H., B. Mograbi, H. Schmid-Antomarchi, S. Fischer, and J. Rossi 1997. CSF-1 stimulation induces the formation of a multiprotein complex including CSF-1 receptor, c-Cbl, PI 3-kinase, Crk-II and Grb2. Oncogene 14:2331–2338.
  • Jaiswal, R. K., E. Weissinger, W. Kolch, and J. Landreth 1996. Nerve growth factor-mediated activation of the mitogen-activated protein (MAP) kinase cascade involves a signaling complex containing B-Raf and HSP90. J. Biol. Chem. 271:23626–23629.
  • Joly, M., A. Kazlauskas, and J. Corvera 1995. Phosphatidylinositol 3-kinase activity is required at a postendocytic step in platelet-derived growth factor receptor trafficking. J. Biol. Chem. 270:13225–13230.
  • Jones, S. M., K. E. Howell, J. R. Henley, H. Cao, and J. McNiven 1998. Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 279:573–577.
  • Kanagasundaram, V. Unpublished data.
  • Kanagasundaram, V., E. Christy, J. A. Hamilton, and J. Jaworowski 1998. Different pathways of colony stimulating factor-1 degradation in macrophage populations revealed by wortmannin sensitivity. Biochem. J. 330:197–202.
  • Kanagasundaram, V., A. Jaworowski, and J. Hamilton 1996. Association between phosphatidylinositol-3 kinase, Cbl and other tyrosine phosphorylated proteins in CSF-1 stimulated macrophages. Biochem. J. 320:68–77.
  • Kapeller, R., R. Chakrabarti, L. Cantley, F. Fay, and J. Corvera 1993. Internalization of activated platelet-derived growth factor receptor-phosphatidylinositol-3′ kinase complexes: potential interactions with microtubule cytoskeleton. Mol. Cell. Biol. 13:6052–6063.
  • Kaplan, D. R., M. Whitman, B. Schaffhausen, D. C. Pallas, M. White, L. Cantley, and J. Roberts 1987. Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein phosphotidylinositol kinase activity. Cell 50:1021–1029.
  • Li, W., and J. Stanley 1991. Role of dimerization and modification of the CSF-1 receptor in its activation and internalization during the CSF-1 response. EMBO J. 10:277–288.
  • Lioubin, M. N., G. M. Myles, K. Carlberg, D. Bowtell, and J. Rohrschneider 1994. SHC, GRB2, SOS1, and a 150-kilodalton tyrosine-phosphorylated protein form complexes with Fms in hematopoietic cells. Mol. Cell. Biol. 14:5682–5691.
  • Liu, P., Y. Ying, Y.-G. Ko, and J. Anderson 1996. Localization of platelet-derived growth factor-stimulated phosphorylation cascade to caveolae. J. Biol. Chem. 271:10299–10303.
  • Lowenstein, E. J., R. J. Daly, A. G. Batzer, W. Li, B. Margolis, R. Lammers, A. Ullrich, E. Y. Skolnik, D. Bar Sagi, and J. Schlessinger 1992. The SH2 and SH3 domain-containing protein Grb2 links receptor tyrosine kinases to ras signaling. Cell 70:431–442.
  • Manger, R., L. Najita, E. J. Nichols, S. Hakomori, and J. Rohrschneider 1984. Cell surface expression of the McDonough strain of feline sarcoma virus fms gene product (gp140fms). Cell 39:327–337.
  • Morgan, C., J. W. Pollard, and J. Stanley 1987. Isolation and characterization of a cloned growth factor dependent macrophage cell line, BAC1.2F5. J. Cell. Physiol. 130:420–427.
  • Novak, U., A. G. Harpur, L. Paradiso, V. Kanagasundaram, A. Jaworowski, A. F. Wilks, and J. Hamilton 1995. CSF-1 induced Stat1 and Stat3 activation is accompanied by phosphorylation of Tyk2 in macrophage and Tyk2 and Jak1 in fibroblasts. Blood 86:2948–2956.
  • Novak, U., E. Nice, J. A. Hamilton, and J. Paradiso 1996. Requirement for Y706 of the murine (or Y708 of the human) CSF-1 receptor for Stat1 activation in response to CSF-1. Oncogene 13:2607–2613.
  • Ohno, H., J. Stewart, M.-C. Fournier, H. Bosshart, I. Rhee, S. Miyatake, T. Saito, A. Gallusser, T. Kirchhausen, and J. Bonifacino 1995. Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science 269:1872–1875.
  • Ota, Y., and J. Samelson 1997. The product of the proto-oncogene c-cbl: a negative regulator of the Syk tyrosine kinase. Science 276:418–420.
  • Pawson, T., and J. Scott 1997. Signaling through scaffold, anchoring, and adaptor proteins. Science 278:2075–2080.
  • Ponzetto, C., A. Bardelli, Z. Zhen, F. Maina, P. dalla Zonca, S. Giordano, A. Graziani, G. Panayotou, and J. Comoglio 1994. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor family. Cell 77:261–271.
  • Reedijk, M., X. Liu, and J. Pawson 1990. Interactions of phosphatidylinositol kinase, GTPase-activating protein (GAP), and GAP-associated proteins with the colony-stimulating factor 1 receptor. Mol. Cell. Biol. 10:5601–5608.
  • Reedijk, M., X. Liu, P. van der Geer, K. Letwin, M. D. Waterfield, T. Hunter, and J. Pawson 1992. Tyr721 regulates specific binding of the CSF-1 receptor kinase insert to PI 3′-kinase SH2 domains: a model for SH2-mediated receptor target interactions. EMBO J. 11:1365–1372.
  • Robinson, M. S. 1994. The role of clathrin, adaptors and dynamin in endocytosis. Curr. Opin. Cell Biol. 6:538–544.
  • Rordorf-Nikolic, T., D. J. van Horn, D. Chen, M. F. White, and J. Backer 1995. Regulation of phosphatidylinositol 3′-kinase by tyrosyl phosphoproteins. J. Biol. Chem. 270:3662–3666.
  • Rosnet, O., and J. Birnbaum 1993. Hematopoietic receptors of class III receptor-type tyrosine kinases. Crit. Rev. Oncogen. 4:595–613.
  • Roussel, M. F., T. J. Dull, C. W. Rettenmier, P. Ralph, A. Ullrich, and J. Sherr 1987. Transforming potential of the c-fms proto-oncogene (CSF-1 receptor). Nature 325:549–552.
  • Roussel, M. F., S. A. Shurtleff, J. R. Downing, and J. Sherr 1990. A point mutation at tyrosine 809 in the human colony-stimulating factor 1 receptor impairs mitogenesis without abrogating tyrosine kinase activity, association with phosphatidylinositol 3-kinase, or induction of fos and junB genes. Proc. Natl. Acad. Sci. USA 87:6738–6742.
  • Scaife, R., I. Gout, M. D. Waterfield, and J. Margolis 1994. Growth factor-induced binding of dynamin to signal transduction proteins involves sorting to distinct and separate proline-rich dynamin sequences. EMBO J. 13:2574–2582.
  • Sengupta, A., W.-K. Liu, Y. G. Yeung, D. C. Y. Yeung, A. R. Frackelton Jr., and J. Stanley 1988. Identification and subcellular localization of proteins that are rapidly phosphorylated in tyrosine in response to colony-stimulating factor-1. Proc. Natl. Acad. Sci. USA 85:8062–8066.
  • Sherr, C. J., C. W. Rettenmier, R. Sacca, M. F. Roussel, A. T. Look, and J. Stanley 1985. The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41:665–676.
  • Sorkin, A., A. Eriksson, C.-H. Heldin, B. Westermark, and J. Claesson-Welsh 1993. Pool of ligand-bound platelet-derived growth factor β-receptors remain activated and tyrosine phosphorylated after internalization. J. Cell. Physiol. 156:373–382.
  • Sorkin, A., and J. Waters 1993. Endocytosis of growth factor receptors. Bioessays 15:375–382.
  • Stanley, E. R., L. J. Guilbert, R. J. Tushinski, and J. Bartelmez 1983. CSF-1-A mononuclear phagocyte lineage-specific hematopoietic growth factor. J. Cell. Biochem. 21:151–159.
  • Tapley, P., A. Kazlauskas, J. A. Cooper, and J. Rohrschneider 1990. Macrophage colony-stimulating factor-induced tyrosine phosphorylation of c-fms proteins expressed in FDC-P1 and BALB/c-3T3 cells. Mol. Cell. Biol. 10:2528–2538.
  • Timms, J. F., K. Carlberg, H. Gu, H. Chen, S. Kamatkar, M. J. S. Nadler, L. R. Rohrschneider, and J. Neel 1998. Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages. Mol. Cell. Biol. 18:3838–3850.
  • van der Geer, P., and J. Hunter 1993. Mutation of Tyr697, a GRB2-binding site, and Tyr721, a PI 3-kinase binding site, abrogates signal transduction by the murine CSF-1 receptor expressed in Rat-2 fibroblasts. EMBO J. 12:5161–5172.
  • van Hoek, M., C. S. Allen, and J. Parsons 1997. Phosphotyrosine phosphatase activity associated with c-Src in large multimeric complexes isolated from adrenal medullary chromaffin cells. Biochem. J. 326:271–277.
  • Wang, Y., Y.-G. Yeung, W. Y. Langdon, and J. Stanley 1996. c-Cbl is transiently tyrosine-phosphorylated, ubiquitinated, and membrane-targeted following CSF-1 stimulation of macrophages. J. Biol. Chem. 271:17–20.
  • Wang, Z., and J. Moran 1996. Requirement for the adaptor protein Grb2 in EGF receptor endocytosis. Science 272:1935–1938.
  • Yeung, Y. G., K. L. Berg, F. J. Pixley, R. H. Angeletti, and J. Stanley 1992. Protein tyrosine phosphatase-1C is rapidly phosphorylated in tyrosine in macrophages in response to colony stimulating factor-1. J. Biol. Chem. 267:23447–23450.
  • Yeung, Y.-G., Y. Wang, D. B. Einstein, P. S. W. Lee, and J. Stanley 1998. Colony-stimulating factor-1 stimulates the formation of multimeric cytosolic complexes of signaling proteins and cytoskeletal components in macrophages. J. Biol. Chem. 273:17128–17137.
  • Zanke, B. W., E. A. Rubie, E. Winnett, J. Chan, S. Randall, M. Parsons, K. Boudreau, M. McInnis, M. Yan, D. J. Templeton, and J. Woodgett 1996. Mammalian mitogen-activated protein kinase pathways are regulated through formation of specific kinase-activator complexes. J. Biol. Chem. 271:29876–29881.
  • Zhang, Z. Y., J. P. Davis, and J. Van Etten 1992. Covalent modification and active-site directed inactivation of a low molecular weight phosphotyrosyl protein phosphatase. Biochemistry 31:1701–1711.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.