26
Views
270
CrossRef citations to date
0
Altmetric
Minireview

Bridging the Gap: Composition, Regulation, and Physiological Function of the IκB Kinase Complex

&
Pages 4547-4551 | Published online: 28 Mar 2023

REFERENCES

  • Alkalay, I., A. Yaron, A. Hatzubai, S. Jung, A. Avraham, O. Gerlitz, I. Pashut-Lavon, and J. Ben-Neriah 1995. In vivo stimulation of IκB phosphorylation is not sufficient to activate NF-κB. Mol. Cell. Biol. 15:1294–1301.
  • Baeuerle, P. A., and J. Baltimore 1996. NF-κB—ten years after. Cell 87:13–20.
  • Baeuerle, P. A., and J. Henkel 1994. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12:141–179.
  • Baldwin, A. S. 1996. The NF-κB and IκB proteins—new discoveries and insights. Annu. Rev. Immunol. 14:649–683.
  • Barnes, P. J., and J. Karin 1997. Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336:1066–1071.
  • Beg, A. A., and J. Baltimore 1996. An essential role for NF-κB in preventing TNF-α-induced cell death. Science 274:782–784.
  • Beg, A. A., W. C. Sha, R. T. Bronson, S. Ghosh, and J. Baltimore 1995. Embryonic lethality and liver degeneration in mice lacking the RelA component in NF-κB. Nature 376:167–169.
  • Bender, K., M. Gottlicher, S. Whiteside, H. J. Rahmsdorf, and J. Herrlich 1998. Sequential DNA damage-independent and -dependent activation of NF-κB by UV. EMBO J. 17:5170–5181.
  • Bhullar, I. S., Y. S. Li, H. Miao, E. Zandi, M. Kim, J. Y. Shyy, and J. Chien 1998. Fluid shear stress activation of IκB kinase is integrin-dependent. J. Biol. Chem. 273:30544–30549.
  • Brockman, J. A., D. C. Scherer, T. A. McKinsey, S. M. Hall, X. Qi, W. Y. Lee, and J. Ballard 1995. Coupling of a signal response domain in IκBα to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15:2809–2818.
  • Brown, K., S. Gerstberger, L. Carlson, G. Franzoso, and J. Siebenlist 1995. Control of IκBα proteolysis by site-specific, signal-induced phosphorylation. Science 267:1485–1491.
  • Chen, Z., J. Hagler, V. J. Palombella, F. Melandri, D. Scherer, D. Ballard, and J. Maniatis 1995. Signal-induced site-specific phosphorylation targets IκB to the ubiquitin-proteasome pathway. Genes Dev. 9:1586–1597.
  • Chen, Z. J., L. Parent, and J. Maniatis 1996. Site-specific phosphorylation of IκBα by a novel ubiquitination-dependent protein kinase activity. Cell 84:853–862.
  • Chu, Z. L., J. A. DiDonato, J. Hawiger, and J. Ballard 1998. The tax oncoprotein of human T-cell leukemia virus type 1 associates with and persistently activates IκB kinases containing IKKα and IKKβ. J. Biol. Chem. 273:15891–15894.
  • Cohen, L., W. J. Henzel, and J. Baeuerle 1998. IKAP is a scaffold protein of the IκB kinase complex. Nature 395:292–296.
  • Connelly, M. A., and J. Marcu 1995. CHUK, a new member of the helix-loop-helix and leucine zipper families of interacting proteins, contains a serine-threonine kinase domain. Cell. Mol. Biol. Res. 41:537–549.
  • Delhase, M., M. Hayakawa, Y. Chen, and J. Karin 1999. Positive and negative regulation of IκB kinase activity through IKKβ subunit phosphorylation. Science 284:309–313.
  • DiDonato, J., F. Mercurio, C. Rosette, J. Wu-Li, H. Suyang, S. Ghosh, and J. Karin 1996. Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16:1295–1304.
  • DiDonato, J. A., M. Hayakawa, D. M. Rothwarf, E. Zandi, and J. Karin 1997. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388:548–554.
  • DiDonato, J. A., F. Mercurio, and J. Karin 1995. Phosphorylation of IκBα precedes but is not sufficient for its dissociation from NF-κB. Mol. Cell. Biol. 15:1302–1311.
  • Doi, T. S., M. W. Marino, T. Takahashi, T. Yoshida, T. Sakakura, L. J. Old, and J. Obata 1999. Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic lethality. Proc. Natl. Acad. Sci. USA 96:2994–2999.
  • Hibi, M., A. N. Lin, T. Smeal, A. Minden, and J. Karin 1993. Identification of an oncoprotein-responsive and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7:2135–2148.
  • Hu, Y., V. Baus, M. Delhase, P. Zhang, R. Johnson, and J. Karin 1999. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of the IκB kinase. Science 284:318–320.
  • Karin, M., and J. Delhase 1998. JNK or IKK, AP-1 or NF-κB, which are the targets for MEK kinase 1 action? Proc. Natl. Acad. Sci. USA 95:9067–9069.
  • Lee, F. S., J. Hagler, Z. J. Chen, and J. Maniatis 1997. Activation of the IκBα kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88:213–222.
  • Lee, F. S., R. T. Peters, L. C. Dang, and J. Maniatis 1998. MEKK1 activates both IκB kinase α and IκB kinase β. Proc. Natl. Acad. Sci. USA 95:9319–9324.
  • Li, N., and J. Karin 1998. Ionizing radiation and short wavelength UV activate NF-κB through two distinct mechanisms. Proc. Natl. Acad. Sci. USA 95:13012–13017.
  • Li, Q., D. Van Antwerp, F. Mercurio, K.-F. Lee, and J. Verma 1999. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 284:321–325.
  • Li, Z., et al. Unpublished data.
  • Liu, Z. G., H. L. Hsu, D. V. Goeddel, and J. Karin 1996. Dissection of TNF receptor 1 effector functions—Jnk activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell 87:565–576.
  • Malinin, N. L., M. P. Boldin, A. V. Kovalenko, and J. Wallach 1997. MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature 385:540–544.
  • Mercurio, F., H. Zhu, B. W. Murray, A. Shevchenko, B. L. Bennett, J. Li, D. B. Young, M. Barbosa, M. Mann, A. Manning, and J. Rao 1997. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278:860–866.
  • Regnier, C. H., H. Yeong Song, X. Gao, D. V. Goeddel, Z. Cao, and J. Rothe 1997. Identification and characterization of an IκB kinase. Cell 90:373–383.
  • Rothwarf, D. M., E. Zandi, G. Natoli, and J. Karin 1998. IKK-γ is an essential regulatory subunit of the IκB kinase complex. Nature 395:297–300.
  • Takeda, K., O. Takeuchi, T. Tsujimura, S. Itami, O. Adachi, T. Kawai, H. Sanjo, K. Yoshikawa, N. Terada, and J. Akira 1999. Limb and skin abnormalities in mice lacking IKKα. Science 284:313–316.
  • Traenckner, E. B. M., H. L. Pahl, T. Henkel, K. N. Schmidt, S. Wilk, and J. Baeuerle 1995. Phosphorylation of human IκBα on serines 32 and 36 controls IκBα proteolysis and NF-κB activation in response to diverse stimuli. EMBO J. 14:2876–2883.
  • Uhlik, M., L. Good, G. Xiao, E. W. Harhaj, E. Zandi, M. Karin, and J. Sun 1998. NF-κB-inducing kinase and IκB kinase participate in human T-cell leukemia virus I Tax-mediated NF-κB activation. J. Biol. Chem. 273:21132–21136.
  • Van Antwerp, D. J., S. J. Martin, T. Kafri, D. R. Green, and J. Verma 1996. Suppression of TNF-α-induced apoptosis by NF-κB. Science 274:787–789.
  • Verma, I. M., J. K. Stevenson, E. M. Schwarz, D. Van Antwerp, and J. Miyamoto 1995. Rel/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev. 9:2723–2735.
  • Wang, C. Y., M. W. Mayo, and J. Baldwin 1996. TNF- and cancer therapy-induced apoptosis—potentiation by inhibition of NF-κB. Science 274:784–787.
  • Wang, C. Y., M. W. Mayo, R. G. Korneluk, D. V. Goeddel, A. S. Baldwin Jr.. 1998. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680–1683.
  • Whiteside, S. T., M. K. Ernst, O. LeBail, C. Laurent-Winter, N. Rice, and J. Israël 1995. N- and C-terminal sequences control degradation of MAD3/IκBα in response to inducers of NF-κB activity. Mol. Cell. Biol. 15:5339–5345.
  • Woronicz, J. D., X. Gao, Z. Cao, M. Rothe, and J. Goeddel 1997. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science 278:866–869.
  • Wu, M. X., Z. Ao, K. V. Prasad, R. Wu, and J. Schlossman 1998. IEX-1L, an apoptosis inhibitor involved in NF-κB-mediated cell survival. Science 281:998–1001.
  • Wulczyn, F. G., D. Krappmann, and J. Scheidereit 1996. The NF-κB/Rel and IκB gene families: mediators of immune response and inflammation. J. Mol. Med. 74:749–769.
  • Yamaoka, S., G. Courtois, C. Bessia, S. T. Whiteside, R. Weil, F. Agou, H. E. Kirk, R. J. Kay, and J. Israel 1998. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell 93:1231–1240.
  • Yin, M. J., L. B. Christerson, Y. Yamamoto, Y. T. Kwak, S. Xu, F. Mercurio, M. Barbosa, M. H. Cobb, and J. Gaynor 1998. HTLV-1 Tax protein binds to MEKK1 to stimulate IκB kinase activity and NF-κB activation. Cell 93:875–884.
  • Zandi, E., Y. Chen, and J. Karin 1998. Direct phosphorylation of IκB by IKKα and IKKβ: discrimination between free and NF-κB-bound substrate. Science 281:1360–1363.
  • Zandi, E., D. M. Rothwarf, M. Delhase, M. Hayakawa, and J. Karin 1997. The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell 91:243–252.
  • Zandi, E., and M. Karin. Unpublished data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.