9
Views
34
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Highly Divergent Lentiviral Tat Proteins Activate Viral Gene Expression by a Common Mechanism

, , &
Pages 4592-4599 | Received 23 Feb 1999, Accepted 30 Mar 1999, Published online: 28 Mar 2023

REFERENCES

  • Alonso, A., D. Derse, and J. Peterlin 1992. Human chromosome 12 is required for optimal interactions between Tat and TAR of human immunodeficiency virus type 1 in rodent cells. J. Virol. 66:4617–4621.
  • Bieniasz, P. D., T. A. Grdina, H. P. Bogerd, and J. Cullen 1998. Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. EMBO J. 17:7056–7065.
  • Bogerd, H. P., R. A. Fridell, W. S. Blair, and J. Cullen 1993. Genetic evidence that the Tat proteins of human immunodeficiency virus types 1 and 2 can multimerize in the eukaryotic cell nucleus. J. Virol. 67:5030–5034.
  • Carroll, R., L. Martarano, and J. Derse 1991. Identification of lentivirus tat functional domains through generation of equine infectious anemia virus/human immunodeficiency virus type 1 tat gene chimeras. J. Virol. 65:3460–3467.
  • Carroll, R., B. M. Peterlin, and J. Derse 1992. Inhibition of human immunodeficiency virus type 1 Tat activity by coexpression of heterologous transactivators. J. Virol. 66:2000–2007.
  • Carvalho, M., and J. Derse 1991. Mutational analysis of the equine infectious anemia virus Tat-responsive element. J. Virol. 65:3468–3474.
  • Chun, R. F., and J. Jeang 1996. Requirements for RNA polymerase II carboxyl-terminal domain for activated transcription of human retroviruses human T-cell lymphotropic virus I and HIV-1. J. Biol. Chem. 271:27888–27894.
  • Cullen, B. R. 1998. HIV-1 auxiliary proteins: making connections in a dying cell. Cell 93:685–692.
  • Dingwall, C., I. Ernberg, M. J. Gait, S. M. Green, S. Heaphy, J. Karn, A. D. Lowe, M. Singh, M. A. Skinner, and J. Valerio 1989. Human immunodeficiency virus 1 tat protein binds trans-activation-responsive region (TAR) RNA in vitro. Proc. Natl. Acad. Sci. USA 86:6925–6929.
  • Feinberg, M. B., D. Baltimore, and J. Frankel 1991. The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. Proc. Natl. Acad. Sci. USA 88:4045–4049.
  • Feng, S., and J. Holland 1988. HIV-1 tat trans-activation requires the loop sequence within tar. Nature 334:165–167.
  • Fridell, R. A., L. S. Harding, H. P. Bogerd, and J. Cullen 1995. Identification of a novel human zinc finger protein that specifically interacts with the activation domain of lentiviral Tat proteins. Virology 209:347–357.
  • Fujinaga, K., T. P. Cujec, J. Peng, J. Garriga, D. H. Price, X. Grana, and J. Peterlin 1998. The ability of positive transcription elongation factor B to transactivate human immunodeficiency virus transcription depends on a functional kinase domain, cyclin T1, and Tat. J. Virol. 72:7154–7159.
  • Fujinaga, K., R. Taube, J. Wimmer, T. P. Cujec, and J. Peterlin 1999. Interactions between human cyclin T, Tat, and the transactivation response element (TAR) are disrupted by a cysteine to tyrosine substitution found in mouse cyclin T. Proc. Natl. Acad. Sci. USA 96:1285–1290.
  • Garber, M. E., P. Wei, V. N. KewalRamani, T. P. Mayall, C. H. Herrmann, A. P. Rice, D. R. Littman, and J. Jones 1998. The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev. 12:3512–3527.
  • Gold, M. O., and J. Rice 1998. Targeting of CDK8 to a promoter-proximal RNA element demonstrates catalysis-dependent activation of gene expression. Nucleic Acids Res. 26:3784–3788.
  • Gold, M. O., X. Yang, C. H. Herrmann, and J. Rice 1998. PITALRE, the catalytic subunit of TAK, is required for human immunodeficiency virus Tat transactivation in vivo. J. Virol. 72:4448–4453.
  • Jones, K. A. 1997. Taking a new TAK on tat transactivation. Genes Dev. 11:2593–2599.
  • Herrmann, C. H., and J. Rice 1993. Specific interaction of the human immunodeficiency virus Tat proteins with a cellular protein kinase. Virology 197:601–608.
  • Herrmann, C. H., and J. Rice 1995. Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor. J. Virol. 69:1612–1620.
  • Herrmann, C. H., M. O. Gold, and J. Rice 1996. Viral transactivators specifically target distinct cellular protein kinases that phosphorylate the RNA polymerase II C-terminal domain. Nucleic Acids Res. 24:501–508.
  • Kao, S. Y., A. F. Calman, P. A. Luciw, and J. Peterlin 1987. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330:489–493.
  • Laspia, M. F., A. P. Rice, and J. Mathews 1989. HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell 59:283–292.
  • Madore, S. J., and J. Cullen 1993. Genetic analysis of the cofactor requirement for human immunodeficiency virus type 1 Tat function. J. Virol. 67:3703–3711.
  • Malim, M. H., L. S. Tiley, D. F. McCarn, J. R. Rusche, J. Hauber, and J. Cullen 1990. HIV-1 structural gene expression requires binding of the Rev trans-activator to its RNA target sequence. Cell 60:675–683.
  • Mancebo, H. S., G. Lee, J. Flygare, J. Tomassini, P. Luu, Y. Zhu, J. Peng, C. Blau, D. Hazuda, D. Price, and J. Flores 1997. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev. 11:2633–2644.
  • Maury, W. J., S. Carpenter, K. Graves, and J. Chesebro 1994. Cellular and viral specificity of equine infectious anemia virus Tat transactivation. Virology 200:632–642.
  • Okamoto, H., C. T. Sheline, J. L. Corden, K. A. Jones, and J. Peterlin 1996. Trans-activation by human immunodeficiency virus Tat protein requires the C-terminal domain of RNA polymerase II. Proc. Natl. Acad. Sci. USA 93:11575–11579.
  • Peng, J., Y. Zhu, J. T. Milton, and J. Price 1998. Identification of multiple cyclin subunits of human P-TEFb. Genes Dev. 12:755–762.
  • Rice, A. P., and J. Carlotti 1990. Mutational analysis of the conserved cysteine-rich region of the human immunodeficiency virus type 1 Tat protein. J. Virol. 64:1864–1868.
  • Selby, M. J., E. S. Bain, P. A. Luciw, and J. Peterlin 1989. Structure, sequence, and position of the stem-loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat. Genes Dev. 3:547–558.
  • Stephens, R. M., D. Derse, and J. Rice 1990. Cloning and characterization of cDNAs encoding equine infectious anemia virus Tat and putative Rev proteins. J. Virol. 64:3716–3725.
  • Tiley, L. S., S. J. Madore, M. H. Malim, and J. Cullen 1992. The VP16 transcription activation domain is functional when targeted to a promoter-proximal RNA sequence. Genes Dev. 6:2077–2087.
  • Tiley, L. S., M. H. Malim, H. K. Tewary, P. G. Stockley, and J. Cullen 1992. Identification of a high-affinity RNA-binding site for the human immunodeficiency virus type 1 Rev protein. Proc. Natl. Acad. Sci. USA 89:758–762.
  • Wei, P., M. E. Garber, S. M. Fang, W. H. Fischer, and J. Jones 1998. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92:451–462.
  • Yang, X., C. H. Herrmann, and J. Rice 1996. The human immunodeficiency virus Tat proteins specifically associate with TAK in vivo and require the carboxyl-terminal domain of RNA polymerase II for function. J. Virol. 70:4576–4584.
  • Yang, X., M. O. Gold, D. N. Tang, D. E. Lewis, E. Aguilar-Cordova, A. P. Rice, and J. Herrmann 1997. TAK, an HIV Tat-associated kinase, is a member of the cyclin-dependent family of protein kinases and is induced by activation of peripheral blood lymphocytes and differentiation of promonocytic cell lines. Proc. Natl. Acad. Sci. USA 94:12331–12336.
  • Zapp, M. L., and J. Green 1989. Sequence-specific RNA binding by the HIV-1 Rev protein. Nature 342:714–716.
  • Zhu, Y., T. Pe’ery, J. Peng, Y. Ramanathan, N. Marshall, T. Marshall, B. Amendt, M. B. Mathews, and J. Price 1997. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev. 11:2622–2632.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.