8
Views
48
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Transcriptional Cofactor CA150 Regulates RNA Polymerase II Elongation in a TATA-Box-Dependent Manner

&
Pages 4719-4728 | Received 05 Mar 1999, Accepted 09 Apr 1999, Published online: 28 Mar 2023

REFERENCES

  • Barberis, A., J. Pearlberg, N. Simkovich, S. Farrell, P. Reinagel, C. Bamdad, G. Sigal, and J. Ptashne 1995. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81:359–368.
  • Benkirane, M., R. F. Chun, H. Xiao, V. V. Ogryzko, B. H. Howard, Y. Nakatani, and J. Jeang 1998. Activation of integrated provirus requires histone acetyltransferase. J. Biol. Chem. 273:24898–24905.
  • Berger, J., J. Hauber, R. Hauber, R. Geiger, and J. Cullen 1988. Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66:1–10.
  • Berkhout, B., and J. Jeang 1992. Functional roles for the TATA promoter and enhancers in basal and Tat-induced expression of the human immunodeficiency virus type 1 long terminal repeat. J. Virol. 66:139–149.
  • Bieniasz, P. D., T. A. Grdina, H. P. Bogerd, and J. Cullen 1998. Recruitment of a protein complex containing Tat and cyclin T1 governs the species specificity of HIV-1 Tat. EMBO J. 17:7056–7065.
  • Chao, D. M., E. L. Gadbois, P. J. Murray, S. F. Anderson, M. S. Sonu, J. D. Parvin, and J. Young 1996. A mammalian SRB protein associated with an RNA polymerase II holoenzyme. Nature 380:82–85.
  • Cho, H., G. Orphanides, X. Sun, X. J. Yang, V. Ogryzko, E. Lees, Y. Nakatani, and J. Reinberg 1998. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol. Cell. Biol. 18:5355–5363.
  • Chomczynski, P., and J. Sacchi 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.
  • Chun, R. F., and J. Jeang 1996. Requirements for RNA polymerase II carboxyl-terminal domain for activated transcription of human retroviruses human T-cell lymphotropic virus 1 and HIV-1. J. Biol. Chem. 271:27888–27894.
  • Cullen, B. R. 1998. HIV-1 auxiliary proteins: making connections in a dying cell. Cell 93:685–692.
  • Cullen, B. R. 1986. Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell 46:973–982.
  • Dahmus, M. 1996. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem. 271:19009–19012.
  • Dubridge, R. B., P. Tang, H. C. Hsia, P. M. Leong, J. H. Miller, and J. Calos 1987. Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol. Cell. Biol. 7:379–387.
  • Eckner, R. 1996. p300 and CBP as transcriptional regulators and targets of oncogenic events. Biol. Chem. 377:685–688.
  • Farrell, S., N. Simkovich, Y. Wu, A. Barberis, and J. Ptashne 1996. Gene activation by recruitment of the RNA polymerase II holoenzyme. Genes Dev. 10:2359–2367.
  • Garber, M. E., W. Ping, V. N. KewalRamani, T. P. Mayall, C. H. Herrmann, A. P. Rice, D. R. Littman, and J. Jones 1998. The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev. 12:3512–3527.
  • Gaudreau, L., M. Adam, and J. Ptashne 1998. Activation of transcription in vitro by recruitment of the yeast RNA polymerase II holoenzyme. Mol. Cell 1:913–916.
  • Giles, R. H., D. J. M. Peters, and J. Breuning 1998. Conjunction dysfunction: CBP/p300 in human disease. Trends Genet. 14:178–183.
  • Gold, M. O., X. Yang, C. H. Herrmann, and J. Rice 1998. PITALRE, the catalytic subunit of TAK, is required for human immunodeficiency virus Tat transactivation in vivo. J. Virol. 72:4448–4453.
  • Goldstrohm, A., C. Suñé, and M. A. Garcia-Blanco. Unpublished data.
  • Hampsey, M. 1998. Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol. Mol. Biol. Rev. 62:465–503.
  • Herrmann, C. H., and J. Rice 1995. Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor. J. Virol. 69:1612–1620.
  • Herrmann, C. H., and J. Rice 1993. Specific interaction of the human immunodeficiency virus Tat proteins with a cellular protein kinase. Virology 197:601–608.
  • Hottiger, M. O., and J. Nabel 1998. Interaction of human immunodeficiency virus type 1 Tat with the transcriptional coactivators p300 and CREB binding protein. J. Virol. 72:8252–8256.
  • Jones, K. A., and J. Peterlin 1994. Control of RNA initiation and elongation at the HIV-1 promoter. Annu. Rev. Biochem. 63:717–743.
  • Keaveney, M., and J. Struhl 1998. Activator-mediated recruitment of the RNA polymerase II machinery is the predominant mechanism for transcriptional activation in yeast. Mol. Cell 1:917–924.
  • Koleske, A. J., and J. Young 1994. An RNA polymerase II holoenzyme responsive to activators. Nature 368:466–469.
  • Lee, J. M., and J. Greenleaf 1997. Modulation of RNA polymerase II elongation efficiency by c-terminal heptapeptide repeat domain kinase I. J. Biol. Chem. 272:10990–10993.
  • Li, X.-Y., and J. Green 1998. The HIV-1 Tat cellular coactivator Tat-SF1 is a general transcription elongation factor. Genes Dev. 12:2992–2996.
  • Lu, X., T. M. Welsh, and J. Peterlin 1993. The human immunodeficiency virus type 1 long terminal repeat specifices two different transcription complexes, only one of which is regulated by Tat. J. Virol. 67:1752–1760.
  • Mack, D. H., J. Vartikar, J. M. Pipas, and J. Laimins 1993. Specific repression of TATA-mediated but not initiator-mediated transcription by wild-type p53. Nature 363:281–283.
  • Majello, B., G. Napolitano, P. De Luca, and J. Lania 1998. Recruitment of human TBP selectively activates RNA polymerase II TATA-dependent promoters. J. Biol. Chem. 273:16509–16516.
  • Maldonado, E., R. Shiekhattar, M. Sheldon, H. Cho, R. Drapkin, P. Rickert, E. Lees, C. W. Anderson, S. Linn, and J. Reinberg 1996. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 381:86–89.
  • Malim, M. H., J. Hauber, R. Fenrick, and J. Cullen 1988. Immunodeficiency virus rev trans-activator modulates the expression of the viral regulatory genes. Nature 335:181–183.
  • Mancebo, H., G. Lee, J. Flygare, J. Tomassini, P. Luu, Y. Zhu, C. Blau, D. Hazuda, D. Price, and J. Flores 1997. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev. 11:2633–2644.
  • Marzio, G., M. Tyagi, M. I. Gutierrez, and J. Giacca 1998. HIV-1 Tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. J. Biol. Chem. 95:13519–13524.
  • Meulia, T., A. Krumm, C. Spencer, and J. Groudine 1992. Sequences in the human c-myc P2 promoter affect the elongation and premature termination of transcripts initiated from the upstream P1 promoter. Mol. Cell. Biol. 12:4590–4600.
  • Mizushima, S., and J. Nagata 1990. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 18:5322.
  • Myer, V. E., and J. Young 1998. RNA polymerase II holoenzymes and subcomplexes. J. Biol. Chem. 273:27757–27760.
  • Nakajima, T., C. Uchida, S. F. Anderson, J. D. Parvin, and J. Montminy 1997. Analysis of a cAMP-responsive activator reveals a two-component mechanism for transcriptional induction via signal-dependent factors. Genes Dev. 11:738–747.
  • Neish, A. S., S. F. Anderson, B. P. Schlegel, W. Wei, and J. Parvin 1998. Factors associated with the mammalian RNA polymerase II holoenzyme. Nucleic Acids Res. 26:847–853.
  • Neumann, J. R., C. A. Morency, and J. Russian 1987. A novel rapid assay for chloramphenicol acetyl transferase gene expression. BioTechniques 5:444–447.
  • Ohno, M., and J. Shimura 1996. A human RNA helicase-like protein, HRH1, facilitates nuclear export of spliced mRNA by releasing the RNA from the spliceosome. Genes Dev. 10:997–1007.
  • Okamoto, H., C. T. Sheline, J. L. Corden, K. A. Jones, and J. Peterlin 1996. Trans-activation by human immunodeficiency virus Tat protein requires the C-terminal domain of RNA polymerase II. Proc. Natl. Acad. Sci. USA 93:11575–11579.
  • Olsen, H. S., and J. Rosen 1992. Contribution of the TATA motif to Tat-mediated transcriptional activation of human immunodeficiency virus gene expression. J. Virol. 66:5594–5597.
  • Postigo, A. A., A. M. Sheppard, M. L. Mucenski, and J. Dean 1997. c-Myb and Ets proteins synergize to overcome transcriptional repression by ZEB. EMBO J. 16:3924–3934.
  • Ranish, J. A., N. Yudkovsky, and J. Hahn 1999. Intermediates in formation and activity of the RNA polymerase II preinitiation complex: holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB. Genes Dev. 13:49–63.
  • Rosen, G. D., J. L. Barks, M. F. Iademarco, R. J. Fisher, and J. Dean 1994. An intricate arrangement of binding sites for the Ets family of transcription factors regulates activity of the integrin gene promoter. J. Biol. Chem. 269:15652–15660.
  • Rosen, G. D., J. R. Sanes, R. LaChance, J. M. Cunningham, J. Roman, and J. Dean 1992. Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis. Cell 69:1107–1119.
  • Song, C.-Z., P. M. Loewenstein, and J. Green 1995. Repression in vitro, by human adenovirus E1A protein domains, of basal or Tat-activated transcription of the human immunodeficiency virus type 1 long terminal repeat. J. Virol. 69:2907–2911.
  • Suñé, C., R. Hayashi, Y. Liu, W. S. Lane, R. A. Young, and J. Garcia-Blanco 1997. CA150, a nuclear protein associated with the RNA polymerase II holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription. Mol. Cell. Biol. 17:6029–6039.
  • Tansey, W. P., S. Ruppert, R. Tjian, and J. Herr 1994. Multiple regions of TBP participate in the response to transcriptional activators in vivo. Genes Dev. 8:2756–2769.
  • Telesnitsky, A. P. W., and J. Chamberlin 1996. Sequences linked to prokaryotic promoters can affect the efficiency of downstream termination sites. J. Mol. Biol. 205:315–330.
  • Tsang, S. X., G. F. Morris, M. Lu, and J. Morris 1996. TATA-dependent repression of human immunodeficiency virus type-1 transcription by the adenovirus E1A 243R oncoprotein. Oncogene 12:819–826.
  • Uptain, S. M., C. M. Kane, and J. Chamberlin 1997. Basic mechanisms of transcript elongation and its regulation. Annu. Rev. Biochem. 66:117–172.
  • Venot, C., M. Maratrat, C. Dureuil, E. Conseiller, L. Bracco, and J. Debussche 1998. The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO J. 17:4668–4679.
  • Ventura, A. M., M. Q. Arens, A. Srinivasan, and J. Chinnadurai 1990. Silencing of human immunodeficiency virus long terminal repeat expression by an adenovirus E1a mutant. Proc. Natl. Acad. Sci. USA 87:1310–1314.
  • Wang, H. G. H., Y. Rikitake, M. C. Carter, P. Yaciuk, S. E. Abraham, B. Zerler, and J. Moran 1993. Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. J. Virol. 67:476–488.
  • Wei, P., M. E. Garber, S. Fang, W. H. Fischer, and J. Jones 1998. A novel CDK9 associated c-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92:451–462.
  • Xiao, H., J. T. Lis, and J. Jeang 1997. Promoter activity of Tat at steps subsequent to TATA-binding protein recruitment. Mol. Cell. Biol. 17:6898–6905.
  • Yang, X., M. O. Gold, D. N. Tang, D. E. Lewis, E. Aguilar-Cordova, A. P. Rice, and J. Herrmann 1997. TAK, an HIV Tat-associated kinase, is a member of the cyclin-dependent family of protein kinases and is induced by activation of peripheral blood lymphocytes and differentiation of promonocytic cell lines. Proc. Natl. Acad. Sci. USA 94:12331–12336.
  • Yang, X., C. H. Herrmann, and J. Rice 1996. The human immunodeficiency virus Tat proteins specifically associate with TAK in vivo and require the carboxyl-terminal domain of RNA polymerase II for function. J. Virol. 70:4576–4584.
  • Zawel, L., and J. Reinberg 1995. Common themes in assembly and function of eukaryotic transcription complexes. Annu. Rev. Biochem. 64:533–561.
  • Zenzie-Gregory, B., P. Sheridan, K. A. Jones, and J. Smale 1993. HIV-1 core promoter lacks a simple initiator element but contains a bipartite activator at the transcription start site. J. Biol. Chem. 268:15823–15832.
  • Zhou, Q., D. Chen, E. Pierstorff, and J. Luo 1998. Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages. EMBO J. 17:3681–3691.
  • Zhou, Q., and J. Sharp 1996. Tat-SF1: cofactor for stimulation of transcription elongation by HIV-1 Tat. Science 274:605–610.
  • Zhu, Y., T. Pe’ery, J. Peng, Y. Ramanathan, N. Marshall, T. Marshall, B. Amendt, M. Mathews, and J. Price 1997. Transcription elongation factor P-TEFb is required for HIV-1 Tat transactivation in vitro. Genes Dev. 11:2622–2632.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.