2
Views
8
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Suppression of E1A-Mediated Transformation by the p50E4F Transcription Factor

&
Pages 4739-4749 | Received 25 Jan 1999, Accepted 20 Apr 1999, Published online: 28 Mar 2023

REFERENCES

  • Alevizopoulos, K., B. Catarin, J. Vlach, and J. Amati 1998. A novel function of adenovirus E1A is required to overcome growth arrest by the CDK2 inhibitor p27(Kip1). EMBO J. 17:5987–5997.
  • Attardi, L. D., S. W. Lowe, J. Brugarolas, and J. Jacks 1996. Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis. EMBO J. 15:3693–3701.
  • Boyd, J. M., T. Subramanian, U. Schaeper, M. La Regina, S. Bayley, and J. Chinnadurai 1993. A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J. 12:469–478.
  • Chen, H., and J. Hung 1997. Involvement of co-activator p300 in the transcriptional regulation of the HER-2/neu gene. J. Biol. Chem. 272:6101–6104.
  • Chen, H., D. Yu, G. Chinnadurai, D. Karunagaran, and J. Hung 1997. Mapping of adenovirus 5 E1A domains responsible for suppression of neu-mediated transformation via transcriptional repression of neu. Oncogene 14:1965–1971.
  • Chinnadurai, G. 1992. Adenovirus E1a as a tumor-suppressor gene. Oncogene 7:1255–1258.
  • Chiou, S. K., and J. White 1997. p300 binding by E1A cosegregates with p53 induction but is dispensable for apoptosis. J. Virol. 71:3515–3525.
  • Condorelli, G., and J. Giordano 1997. Synergistic role of E1A-binding proteins and tissue-specific factors in differentiation. J. Cell Biochem. 67:423–431.
  • Cone, R. D., T. Grodzicker, and J. Jaramillo 1998. A retrovirus expressing the 12S adenoviral E1A gene product can immortalize epithelial cells from a broad range of rat tissues. Mol. Biol. Cell 8:1036–1044.
  • Darzynkiewicz, Z., E. Bedner, F. Traganos, and J. Murakami 1998. Critical aspects in the analysis of apoptosis and necrosis. Hum. Cell 11:3–12.
  • Darzynkiewicz, Z., G. Juan, X. Li, W. Gorczyca, T. Murakami, and J. Traganos 1997. Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27:1–20.
  • Datto, M. B., P. P. Hu, T. F. Kowalik, J. Yingling, and J. Wang 1997. The viral oncoprotein E1A blocks transforming growth factor beta-mediated induction of p21/WAF1/Cip1 and p15/INK4B. Mol. Cell. Biol. 17:2030–2037.
  • Debbas, M., and J. White 1993. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev. 7:546–554.
  • Decaudin, D., S. Geley, T. Hirsch, M. Catedo, P. Marchetti, A. Macho, R. Kofler, and J. Kroemer 1997. Bcl-2 and Bcl-XL antagonize the mitochrondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Res. 57:62–67.
  • DeGregori, J., T. Kowalik, and J. Nevins 1995. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis-and G1/S-regulatory genes. Mol. Cell. Biol. 15:4215–4224.
  • de Stancina, E., M. E. McCurrach, F. Zindy, S. Y. Shieh, G. Ferbeyre, A. V. Samuelson, C. Prives, M. F. Roussel, C. J. Sherr, and J. Lowe 1998. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev. 12:2434–2442.
  • Dyson, N. 1998. The regulation of E2F by pRB-family proteins. Genes Dev. 12:2245–2262.
  • Eckner, R. 1996. p300 and CBP as transcriptional regulators and targets of oncogenic events. Biol. Chem. 377:685–688.
  • Eckner, R., T. P. Yao, E. Oldread, and J. Livingston 1996. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 10:2478–2490.
  • Fernandes, E. R., and J. Rooney 1997. The adenovirus E1A-regulated transcription factor E4F is generated from the human homolog of nuclear factor φAP3. Mol. Cell. Biol. 17:1890–1903.
  • Fernandes, E. R., J. Y. Zhang, and J. Rooney 1998. Adenovirus E1A-regulated transcription factor p120E4F inhibits cell growth and induces the stabilization of the cdk inhibitor p21WAF1. Mol. Cell. Biol. 18:459–467.
  • Frisch, S. M. 1996. Reversal of malignancy by the adenovirus E1a gene. Mutat. Res. 350:261–266.
  • Frisch, S. M., and J. Dolter 1995. Adenovirus E1a-mediated tumor suppression by a c-erbB-2/neu-independent mechanism. Cancer Res. 55:5551–5555.
  • Frisch, S. M., and J. Francis 1994. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124:619–626.
  • Frisch, S. M., and J. Ruoslahti 1997. Integrins and anoikis. Curr. Opin. Cell Biol. 9:701–706.
  • Gopalakrishnan, S., J. L. Douglas, and J. Quinlan 1997. Immortalization of primary epithelial cells by E1A 12S requires late, second exon-encoded functions in addition to complex formation with pRB and p300. Cell Growth Differ. 8:541–551.
  • Grossman, S. R., M. Perez, A. L. Kuang, M. Joseph, C. Mansur, Z. X. Xiao, S. Kumar, P. M. Howley, and J. Livingston 1998. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol. Cell 2:405–415.
  • Gunning, P., J. Leavitt, G. Muscat, S.-Y. Ng, and J. Kedes 1987. A human beta-actin expression vector system directs high-level accumulation of antisense transcripts. Proc. Natl. Acad. Sci. USA 84:4831–4835.
  • Harlow, E., D. Lane 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Hasegawa, K., M. B. Meyers, and J. Kitsis 1997. Transcriptional coactivator p300 stimulates cell type-specific gene expression in cardiac myocytes. J. Biol. Chem. 272:20049–20054.
  • Hirsch, T., D. Decaudin, S. A. Susin, P. Marchetti, N. Larochette, M. Resche-Rigon, and J. Kroemer 1998. PK11195, a ligand of the mitochondrial benzodiazepine receptor, facilitates the induction of apoptosis and reverses Bcl-2-mediated cytoprotection. Exp. Cell Res. 241:426–434.
  • Hirsch, T., P. Marchetti, S. A. Susin, B. Dallaporta, N. Zamzami, I. Marzo, M. Geuskens, and J. Kroemer 1997. The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochrondrial permeability transition determine the mode of cell death. Oncogene 15:1753–1581.
  • Hirsch, T., I. Marzo, and J. Kroemer 1997. Role of the mitochrondrial permeability transition pore in apoptosis. Biosci. Rep. 17:67–76.
  • Honda, R., and J. Yasuda 1999. Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J. 18:22–27.
  • Kamijo, T., J. D. Weber, G. Zambetti, F. Zindy, M. F. Roussel, and J. Sherr 1998. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl. Acad. Sci. USA 95:8292–8297.
  • Kawasaki, H., J. Song, R. Eckner, H. Ugai, R. Chiu, K. Taira, Y. Shi, N. Jones, and J. Yokoyama 1998. p300 and ATF-2 are components of the DRF complex, which regulates retinoic acid- and E1A-mediated transcription of the c-jun gene in F9 cells. Genes Dev. 12:233–245.
  • Kirshenbaum, L. A., and J. Schneider 1995. Adenovirus E1A represses cardiac gene transcription and reactivates DNA synthesis in ventricular myocytes, via alternative pocket protein- and p300-binding domains. J. Biol. Chem. 270:7791–7794.
  • Krishan, A. 1975. A rapid flow cytometric analysis of the mammalian cell cycle by propidium iodide staining. J. Cell. Biol. 66:188–193.
  • Kroemer, G., B. Dallaporta, and J. Resche-Rigon 1998. The mitochrondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60:619–42.
  • Lemasters, J. J., A. L. Nieminen, T. Qian, L. C. Trost, S. P. Elmore, Y. Nishimura, R. A. Crowe, W. E. Cascio, C. A. Bradham, D. A. Brenner, and J. Herman 1998. The mitochrondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta 1366:177–196.
  • Leone, G., J. DeGregori, Z. Yan, L. Jakoi, S. Ishida, R. S. Williams, and J. Nevins 1998. E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev. 12:2120–2130.
  • Lill, N. L., S. R. Grossman, D. Ginsberg, J. DeCaprio, and J. Livingston 1997. Binding and modulation of p53 by p300/CBP coactivators. Nature 387:823–827.
  • Lin, H. J., V. Eviner, G. C. Prendergast, and J. White 1995. Activated H-ras rescues E1A-induced apoptosis and cooperates with E1A to overcome p53-dependent growth arrest. Mol. Cell. Biol. 15:4536–4544.
  • Linder, S., P. Popowicz, C. Svensson, M. Marshall, M. Bondesson, and J. Akusjarvi 1992. Enhanced invasive properties of rat embryo fibroblasts transformed by adenovirus E1A mutants with deletions in the carboxy-terminal exon. Oncogene 7:439–443.
  • Lowe, S. W., T. Jacks, D. E. Housman, and J. Ruley 1994. Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc. Natl. Acad. Sci. USA 91:2026–2030.
  • Lowe, S. W., and J. Ruley 1993. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev. 7:535–545.
  • Mal, A., R. Y. Poon, P. H. Howe, H. Toyoshima, T. Hunter, and J. Harter 1996. Inactivation of p27Kep1 by the viral E1A oncoprotein in TGFbeta-treated cells. Nature 380:262–265.
  • Martin, S. J., C. P. Reutelingsperger, A. J. McGahon, J. A. Rader, R. C. van Schie, D. M. LaFace, and J. Green 1995. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182:1545–155.
  • Marzo, I., C. Brenner, N. Zamzami, J. M. Jurgensmeier, S. A. Susin, H. L. Vieira, M. C. Prevost, Z. Xie, S. Matsuyama, J. C. Reed, and J. Kroemer 1998. Bax and adenine nucleotide translocator cooperate in the mitochrondiral control of apoptosis. Science 281:2027–2031.
  • McGill, G., A. Shimamura, R. C. Bates, R. E. Savage, and J. Fisher 1997. Loss of matrix adhesion triggers rapid transformation-selective apoptosis in fibroblasts. J. Cell Biol. 138:901–911.
  • Nevins, J. R. 1995. Adenovirus E1A: transcription regulation and alteration of cell growth control. Curr. Top. Microbiol. Immunol. 199:25–32.
  • Nevins, J. R., G. Leone, J. DeGregori, and J. Jakoi 1997. Role of the Rb/E2F pathway in cell growth control. J. Cell Physiol. 173:233–236.
  • Ohtani, K., J. DeGregori, G. Leone, D. R. Herendeen, T. J. Kelly, and J. Nevins 1996. Expression of the HsOrc1 gene, a human ORC1 homolog, is regulated by cell proliferation via the E2F transcription factor. Mol. Cell. Biol. 16:6977–6984.
  • Persons, D. A., M. G. Mehaffey, M. Kaleko, A. W. Nienhuis, and J. Vanin 1998. An improved method for generating retroviral producer clones for vectors lacking a selectable marker gene. Blood Cells Mol. Dis. 24:167–182.
  • Pomerantz, J., N. Schreiber-Agus, N. J. Liegeois, A. Silverman, L. Alland, L. Chin, J. Potes, K. Chen, I. Orlow, H. W. Lee, C. Cordon-Cardo, and J. DePinho 1998. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92:713–723.
  • Pozzatti, R., M. McCormack, M. A. Thompson, and J. Khoury 1988. The E1a gene of adenovirus type 2 reduces the metastatic potential of ras-transformed rat embryo cells. Mol. Biol. Cell 8:2984–2988.
  • Puri, P. L., M. L. Avantaggiati, C. Balsano, N. Sang, A. Graessmann, A. Giordano, and J. Levrero 1997. p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription. EMBO J. 16:369–383.
  • Quelle, D. E., F. Zindy, R. A. Ashmun, and J. Sherr 1994. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83:993–1000.
  • Rao, I., M. Debbas, P. Sabbatini, D. Hockenbery, S. Korsmeyer, and J. White 1992. The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. Proc. Natl. Sci. USA 89:7742–7746 (Erratum, 89:9974.)
  • Rooney, R. J. Unpublished data.
  • Rooney, R. J., R. R. Daniels, N. A. Jenkins, D. J. Gilbert, K. Rothammer, S. W. Morris, D. R. Higgs, and J. Copeland 1998. Chromosomal location and tissue expression of the gene encoding the adenovirus E1A-regulated transcription factor E4F in humans and mice. Mamm. Genome 9:320–323.
  • Rooney, R. J., P. Raychaudhuri, and J. Nevins 1990. E4F and ATF, two transcription factors that recognize the same site, can be distinguished both physically and functionally: a role for E4F in E1A trans activation. Mol. Cell. Biol. 10:5138–5149.
  • Rooney, R. J., K. Rothammer, and J. Fernandes 1998. Mutational analysis of p50E4F suggests that DNA binding activity is mediated through an alternative structure in a zinc finger domain that is regulated by phosphorylation. Nucleic Acids Res. 26:1681–1688.
  • Santos, E., S. R. Tronick, S. A. Aaronson, S. Pulcianni, and J. Barbacid 1982. T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB and Harvey-MSV transforming genes. Nature 298:343–347 (Abstract.)
  • Schmid, I., W. J. Krall, C. H. Uittenbogaart, J. Braun, and J. Giorgi 1992. Dead cell discrimination with 7-amino-actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry 13:204–208.
  • Schmid, I., C. H. Uittenbogaart, and J. Giorgi 1994. Sensitive method for measuring apoptosis and cell surface phenotype in human thymocytes by flow cytometry. Cytometry 15:12–20.
  • Shisler, J., P. Duerksen-Hughes, T. M. Herminston, W. S. Wold, and J. Gooding 1996. Induction of susceptibility to tumor necrosis factor by E1A is dependent on binding to either p300 or p105-Rb and induction of DNA synthesis. J. Virol. 70:68–77.
  • Somasundaram, K., and J. el-Deiry 1997. Inhibition of p53-mediated transactivation and cell cycle arrest by E1A through its p300/CBP-interacting region. Oncogene 14:1047–1057.
  • Susin, S. A., N. Zamzami, M. Castedo, T. Hirsch, P. Marchetti, A. Macho, E. Daugas, M. Geuskens, and J. Kroemer 1996. Bcl-2 inhibits the mitochrondrial release of an apoptogenic protease. J. Exp. Med. 184:1331–1341.
  • Taylor, D. A., V. B. Kraus, J. J. Schwarz, E. N. Olsen, and J. Kraus 1993. E1A-mediated inhibition of myogenesis correlates with a direct physical interaction of E1A12S and basic helix-loop-helix proteins. Mol. Cell. Biol. 13:4714–4727.
  • van Engeland, M., L. J. Nieland, F. C. Ramaekers, B. Schutte, and J. Reutelingsperger 1998. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1–9.
  • Verems, I., C. Haanen, H. Steffens-Nakken, and J. Reutelingsperger 1995. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods 184:39–51.
  • Weigel, R. J., S. H. Devoto, and J. Nevins 1990. Adenovirus 12S E1A gene represses differentiation of F9 tetratocarcinoma cells. Proc. Natl. Acad. Sci. USA 87:9878–9882.
  • White, E. 1995. Regulation of p53-dependent apoptosis by E1A and E1B. Curr. Top. Microbiol. Immunol. 199:34–58.
  • Yan, Z., J. DeGregori, R. Shohet, G. Leone, B. Stillman, J. R. Nevins, and J. Williams 1998. Cdc6 is regulated by E2F and is essential for DNA replication in mammalian cells. Proc. Natl. Acad. Sci. USA 95:3603–3608.
  • Yu, D., K. Scorsone, and J. Hung 1991. Adenovirus type 5 E1A gene products act as transformation suppressors of the neu oncogenes. Mol. Biol. Cell 11:1745–1750.
  • Yu, D., D. Shi, M. Scanlon, and J. Hung 1993. Reexpression of neu-encoded oncoprotein counteracts the tumor-suppressing but not the metastasis-suppressing function of E1A. Cancer Res. 53:5784–5790.
  • Yuan, W., G. Condorelli, M. Caruso, A. Felsani, and J. Giordano 1996. Human p300 protein is a coactivator for the transcription factor MyoD. J. Biol. Chem. 271:9009–9013.
  • Zamzami, N., T. Hirsch, B. Dallaporta, P. X. Petit, and J. Kroemer 1997. Mitochondrial implication in accidental and programmed cell death: apoptosis and necrosis. J. Bioenerg. Biomembr. 29:185–193.
  • Zindy, F., C. M. Eischen, D. H. Randle, T. Kamijo, J. L. Cleveland, C. J. Sherr, and J. Roussel 1998. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12:2424–2433.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.