17
Views
42
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Removal of Frameshift Intermediates by Mismatch Repair Proteins in Saccharomyces cerevisiae

&
Pages 4766-4773 | Received 18 Feb 1999, Accepted 23 Apr 1999, Published online: 28 Mar 2023

REFERENCES

  • Acharya, S., T. Wilson, S. Gradia, M. F. Kane, S. Guerrette, G. T. Marsischky, R. Kolodner, and J. Fishel 1996. hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc. Natl. Acad. Sci. USA 93:13629–13634.
  • Alani, E. 1996. The Saccharomyces cerevisiae Msh2 and Msh6 proteins form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. Mol. Cell. Biol. 17:2436–2447.
  • Bertrand, P., D. X. Tishkoff, N. Filosi, R. Dasgupta, and J. Kolodner 1998. Physical interaction between components of DNA mismatch repair and nucleotide excision repair. Proc. Natl. Acad. Sci. USA 95:14278–14283.
  • Chen, W., and J. Jinks-Robertson 1998. Mismatch repair proteins regulate heteroduplex formation during mitotic recombination in yeast. Mol. Cell. Biol. 18:6525–6537.
  • Crouse, G. F. 1998. Mismatch repair systems in Saccharomyces cerevisiae, p. 411–448 In J. A. Nickoloff, M. F. Hoekstra (ed.), DNA damage and repair, vol. 1. DNA repair in prokaryotes and lower eukaryotes. Humana Press, Totowa, N.J.
  • Fishman-Lobell, J., and J. Haber 1992. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258:480–484.
  • Flores-Rozas, H., and J. Kolodner 1998. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc. Natl. Acad. Sci. USA 95:12404–12409.
  • Greene, C. N., and J. Jinks-Robertson 1997. Frameshift intermediates in homopolymer runs are removed efficiently by yeast mismatch repair proteins. Mol. Cell. Biol. 17:2844–2850.
  • Habraken, Y., P. Sung, L. Prakash, and J. Prakash 1996. Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3. Curr. Biol. 6:1185–1187.
  • Harfe, B. D., and S. Jinks-Robertson. Unpublished data.
  • Hollingsworth, N. M., L. Ponte, and J. Halsey 1995. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev. 9:1728–1739.
  • Iaccarino, I., F. Palombo, J. Drummond, N. F. Totty, J. J. Hsuan, P. Modrich, and J. Jiricny 1996. MSH6, a Saccharomyces cerevisiae protein that binds to mismatches as a heterodimer with MSH2. Curr. Biol. 6:484–486.
  • Jinks-Robertson, S., C. Greene, W. Chen 1998. Genetic instabilities in yeast, p. 485–507. In R. D. Wells, S. T. Warren (ed.), Genetic instabilities and hereditary neurological diseases. Academic Press, San Diego, Calif.
  • Johnson, R. E., G. K. Kivvali, S. N. Guzder, N. S. Amin, C. Holm, Y. Habraken, P. Sung, L. Prakash, and J. Prakash 1996. Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair. J. Biol. Chem. 271:27987–27990.
  • Johnson, R. E., G. K. Kovvali, L. Prakash, and J. Prakash 1996. Requirement of the yeast MSH3 and MSH6 genes for MSH2-dependent genomic stability. J. Biol. Chem. 271:7285–7288.
  • Kirkpatrick, D. T., and J. Petes 1997. Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins. Nature 387:929–931.
  • Kolodner, R. 1996. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 10:1433–1442.
  • Kroutil, L. C., K. Register, K. Bebenek, and J. Kunkel 1996. Exonucleolytic proofreading during replication of repetitive DNA. Biochemistry 35:1046–1053.
  • Kunkel, T. A., and J. Soni 1988. Mutagenesis by transient misalignment. J. Biol. Chem. 263:14784–14789.
  • Lea, D. E., and J. Coulson 1949. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49:264–285.
  • Macpherson, P., O. Humbert, and J. Karran 1998. Frameshift mismatch recognition by the human MutSα complex. Mutat. Res. 408:55–66.
  • Marsischky, G. T., N. Filosi, M. F. Kane, and J. Kolodner 1996. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10:407–420.
  • Modrich, P., and J. Lahue 1996. Mismatch repair in replication fidelity, genetic recombination and cancer biology. Annu. Rev. Biochem. 65:101–133.
  • Nicholson, A., M. Hendrix, S. Jinks-Robertson, and G. F. Crouse. Unpublished data.
  • Palomba, F., I. Iaccarino, E. Nakajima, M. Ikejima, T. Shimada, and J. Jiricny 1996. hMUTSβ, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. Curr. Biol. 6:1181–1184.
  • Prolla, T. A., D.-M. Christie, and J. Liskay 1994. Dual requirement in yeast DNA mismatch repair for MLH1 and PMS1, two homologs of the bacterial mutL gene. Mol. Cell. Biol. 14:407–415.
  • Prolla, T. A., Q. Pang, E. Alani, R. D. Kolodner, and J. Liskay 1994. MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast. Science 265:1091–1093.
  • Reenan, R. A. G., and J. Kolodner 1992. Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochrondrial and nuclear functions. Genetics 132:975–985.
  • Ripley, L. S. 1990. Frameshift mutation: determinants of specificity. Annu. Rev. Genet. 24:189–213.
  • Ripley, L. S., A. Clark, and J. deBoer 1986. Spectrum of spontaneous frameshift mutations: sequences of bacteriophage T4 rII gene frameshifts. J. Mol. Biol. 191:601–613.
  • Ross-Macdonald, P., and J. Roeder 1994. Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79:1069–1080.
  • Rothstein, R. 1991. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194:281–301.
  • Schaaper, R. M., and J. Dunn 1991. Spontaneous mutation in the Escherichia coli lacI gene. Genetics 129:317–326.
  • Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194:3–20.
  • Sia, E. A., R. J. Kokoska, M. Dominska, P. Greenwell, and J. Petes 1997. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Mol. Cell. Biol. 17:2851–2858.
  • Singer, B. S., and J. Westlye 1988. Deletion formation in bacteriophage T4. J. Mol. Biol. 202:233–243.
  • Strand, M., M. C. Earley, G. F. Crouse, and J. Petes 1995. Mutations in the MSH3 gene preferentially lead to deletions within tracts of simple repetitive DNA in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 92:10418–10421.
  • Strand, M., T. A. Prolla, R. M. Liskay, and J. Petes 1993. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365:274–276.
  • Streisinger, G., Y. Okada, J. Emrich, J. Newton, A. Tsugita, E. Terzaghi, and J. Inouye 1966. Frameshift mutations and the genetic code. Cold Spring Harbor Symp. Quant. Biol. 31:77–84.
  • Tishkoff, D. X., N. Filosi, G. M. Gaida, and J. Kolodner 1997. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88:253–263.
  • Tran, H. T., N. P. Degtyareva, N. N. Koloteva, A. Sugino, H. Masumoto, D. A. Gordenin, and J. Resnick 1995. Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes. Mol. Cell. Biol. 15:5607–5617.
  • Tran, H. T., D. A. Gordenin, and J. Resnick 1996. The prevention of repeat-associated deletions in Saccharomyces cerevisiae by mismatch repair depends on size and origin of deletions. Genetics 143:1579–1587.
  • Tran, H. T., J. D. Keen, M. Kricker, M. A. Resnick, and J. Gordenin 1997. Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol. Cell. Biol. 17:2859–2865.
  • Umar, A., A. B. Buermeyer, J. A. Simon, D. C. Thomas, A. B. Clark, R. M. Liskay, and J. Kunkel 1996. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87:65–73.
  • Umar, A., and J. Kunkel 1996. DNA-replication fidelity, mismatch repair and genome instability in cancer cells. Eur. J. Biochem. 238:297–307.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.