10
Views
68
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Use of a Recombination Reporter Insert To Define Meiotic Recombination Domains on Chromosome III of Saccharomyces cerevisiae

, &
Pages 4832-4842 | Received 10 Feb 1999, Accepted 09 Apr 1999, Published online: 28 Mar 2023

REFERENCES

  • Alani, E., R. Padmore, and J. Kleckner 1990. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61:419–436.
  • Baker, B. S., A. T. Carpenter, M. S. Esposito, R. E. Esposito, and J. Sandler 1976. The genetic control of meiosis. Annu. Rev. Genet. 10:53–134.
  • Baudat, F., and J. Nicolas 1997. Clustering of meiotic double-strand breaks on yeast chromosome III. Proc. Natl. Acad. Sci. USA 94:5213–5218.
  • Becker, D. M., and J. Guarente 1991. High-efficiency transformation of yeast by electroporation. Methods Enzymol. 194:182–187.
  • Bickel, S. E., D. W. Wyman, W. Y. Miyazaki, D. P. Moore, and J. Orr-Weaver 1996. Identification of ORD, a Drosophila protein essential for sister chromatid cohesion. EMBO J. 15:1451–1459.
  • Borde, V., and J. Duguet 1996. In vivo topoisomerase II cleavage sites in the ribosomal DNA of Physarum polycephalum. Biochemistry 35:5787–5795.
  • Cao, L., E. Alani, and J. Kleckner 1990. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61:1089–1101.
  • Chikashige, Y., D. Q. Ding, Y. Imai, M. Yamamoto, T. Haraguchi, and J. Hiraoka 1997. Meiotic nuclear reorganization: switching the position of centromeres and telomeres in the fission yeast Schizosaccharomyces pombe. EMBO J. 16:193–202.
  • Dawson, D. S., A. W. Murray, and J. Szostak 1986. An alternative pathway for meiotic chromosome segregation in yeast. Science 234:713–717.
  • Debrauwère, H., and A. Nicolas. 1998. Personal communication.
  • de Massy, B., F. Baudat, and J. Nicolas 1994. Initiation of recombination in Saccharomyces cerevisiae haploid meiosis. Proc. Natl. Acad. Sci. USA 91:11929–11933.
  • Dernburg, A. F., K. McDonald, G. Moulder, R. Barstead, M. Dresser, and J. Villeneuve 1998. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94:387–398.
  • Elsea, S. H., N. Osheroff, and J. Nitiss 1992. Cytotoxicity of quinolones toward eukaryotic cells. Identification of topoisomerase II as the primary cellular target for the quinolone CP-115,953 in yeast. J. Biol. Chem. 267:13150–13153.
  • Fan, Q., F. Xu, and J. Petes 1995. Meiosis-specific double-strand DNA breaks at the HIS4 recombination hot spot in the yeast Saccharomyces cerevisiae: control in cis and trans. Mol. Cell. Biol. 15:1679–1688.
  • Fan, Q. Q., and J. Petes 1996. Relationship between nuclease-hypersensitive sites and meiotic recombination hot spot activity at the HIS4 locus of Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2037–2043.
  • Fan, Q. Q., F. Xu, M. A. White, and J. Petes 1997. Competition between adjacent meiotic recombination hotspots in the yeast Saccharomyces cerevisiae. Genetics 145:661–670.
  • Gilbertson, L. A., and J. Stahl 1994. Initiation of meiotic recombination is independent of interhomologue interactions. Proc. Natl. Acad. Sci. USA 91:11934–11937.
  • Goldman, A. S., and J. Lichten 1996. The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location. Genetics 144:43–55.
  • Gottschling, D. E. 1992. Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo. Proc. Natl. Acad. Sci. USA 89:4062–4065.
  • Goyon, C., and J. Lichten 1993. Timing of molecular events in meiosis in Saccharomyces cerevisiae: stable heteroduplex DNA is formed late in meiotic prophase. Mol. Cell. Biol. 13:373–382.
  • Gross, D. S., and J. Garrard 1988. Nuclease hypersensitive sites in chromatin. Annu. Rev. Biochem. 57:159–197.
  • Hassold, T., M. Merrill, K. Adkins, S. Freeman, and J. Sherman 1995. Recombination and maternal age-dependent nondisjunction: Molecular studies of trisomy 16. Am. J. Hum. Genet. 57:867–874.
  • Holliday, R. 1964. A mechanism for gene conversion in fungi. Genet. Res. 5:282–304.
  • Kaback, D. B., V. Guacci, D. Barber, and J. Mahon 1992. Chromosome size-dependent control of meiotic recombination. Science 256:228–232.
  • Kane, S. M., and J. Roth 1974. Carbohydrate metabolism during ascospore development in yeast. J. Bacteriol. 118:8–14.
  • Keeney, S., and J. Kleckner 1996. Communication between homologous chromosomes: genetic alterations at a nuclease-hypersensitive site can alter mitotic chromatin structure at that site both in cis and in trans. Genes Cells 1:475–489.
  • Klapholz, S., C. S. Waddell, and J. Esposito 1985. The role of the SPO11 gene in meiotic recombination in yeast. Genetics 110:187–216.
  • Kleckner, N. 1996. Meiosis: how could it work? Proc. Natl. Acad. Sci. USA 93:8167–8174.
  • Klein, S., D. Zenvirth, V. Dror, A. B. Barton, D. B. Kaback, and J. Simchen 1996. Patterns of meiotic double-strand breakage on native and artificial yeast chromosomes. Chromsoma 105:276–284.
  • Koehler, K. E., R. S. Hawley, S. Sherman, and J. Hassold 1996. Recombination and nondisjunction in humans and flies. Hum. Mol. Genet. 5:1495–1504.
  • Lamb, N. E., E. Feingold, A. Savage, D. Avramopoulos, S. Freeman, Y. Gu, A. Hallberg, J. Hersey, G. Karadima, D. Pettay, D. Saker, J. Shen, L. Taft, M. Mikkelsen, M. B. Petersen, T. Hassold, and J. Sherman 1997. Characterization of susceptible chiasma configurations that increase the risk for maternal nondisjunction of chromosome 21. Hum. Mol. Genet. 6:1391–1399.
  • Lamb, N. E., S. B. Freeman, A. Savage-Austin, D. Pettay, L. Taft, J. Hersey, Y. Gu, J. Shen, D. Saker, K. M. May, D. Avramopoulos, M. B. Petersen, A. Hallberg, M. Mikkelsen, T. J. Hassold, and J. Sherman 1996. Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat. Genet. 14:400–405.
  • Lambie, E. J., and J. Roeder 1986. Repression of meiotic crossing over by a centromere (CEN3) in Saccharomyces cerevisiae. Genetics 114:769–789.
  • Lambie, E. J., and J. Roeder 1988. A yeast centromere acts in cis to inhibit meiotic gene conversion of adjacent sequences. Cell 52:863–873.
  • Lichten, M., R. H. Borts, and J. Haber 1987. Meiotic gene conversion and crossing over between dispersed homologous sequences occurs frequently in Saccharomyces cerevisiae. Genetics 115:233–246.
  • Lichten, M., and J. Goldman 1995. Meiotic recombination hotspots. Annu. Rev. Genet. 29:423–444.
  • Liu, J., T.-C. Wu, and J. Lichten 1995. The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. EMBO J. 14:4599–4608.
  • Liu, L. F. 1989. DNA topoisomerase poisons as antitumor drugs. Annu. Rev. Biochem. 58:351–375.
  • Louis, E. 1998. Whole chromosome analysis. Methods Microbiol. 26:15–31.
  • Malkova, A., E. L. Ivanov, and J. Haber 1996. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc. Natl. Acad. Sci. USA 93:7131–7136.
  • McKee, A. H., and J. Kleckner 1997. A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2. Genetics 146:797–816.
  • McKim, K. S., B. L. Green-Marroquin, J. J. Sekelsky, G. Chin, C. Steinberg, R. Khodosh, and J. Hawley 1998. Meiotic synapsis in the absence of recombination. Science 279:876–878.
  • McKim, K. S., and J. Hayashi-Hagihara 1998. mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev. 12:2932–2942.
  • Moore, D. P., W. Y. Miyazaki, J. E. Tomkiel, and J. Orr-Weaver 1994. Double or nothing: a Drosophila mutation affecting meiotic chromosome segregation in both females and males. Genetics 136:953–964.
  • Mortimer, R. K., C. R. Contopoulou, and J. King 1992. Genetic and physical maps of Saccharomyces cerevisiae, edition 11. Yeast 8:817–902.
  • Mortimer, R. K., D. Schild 1981. Genetic mapping in Saccharomyces cerevisiae, p. 11–26. In J. N. Strathern, E. W. Jones, J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Nicklas, R. B. 1997. How cells get the right chromosomes. Science 275:632–637.
  • Nicolas, A. 1998. Relationship between transcription and initiation of meiotic recombination: toward chromatin accessibility. Proc. Natl. Acad. Sci. USA 95:87–89.
  • Ohta, K., A. Nicolas, M. Furuse, A. Nabetani, H. Ogawa, and J. Shibata 1998. Mutations in the MRE11, RAD50, XRS2, and MRE2 genes alter chromatin configuration at meiotic DNA double-stranded break sites in premeiotic and meiotic cells. Proc. Natl. Acad. Sci. USA 95:646–651.
  • Ohta, K., T. Shibata, and J. Nicolas 1994. Changes in chromatin structure at recombination initiation sites during yeast meiosis. EMBO J. 13:5754–5763.
  • Oliver, S. G. et al.. 1992. The complete DNA sequence of yeast chromosome III. Nature 357:38–46.
  • Panyutin, I. G., and J. Hsieh 1993. Formation of a single base mismatch impedes spontaneous DNA branch migration. J. Mol. Biol. 230:413–424.
  • Prinz, S., A. Amon, and J. Klein 1997. Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics 146:781–795.
  • Rattray, A. J., and J. Symington 1993. Stimulation of meiotic recombination in yeast by an ARS element. Genetics 134:175–188.
  • Reynolds, A. E., R. M. McCarroll, C. S. Newlon, and J. Fangman 1989. Time of replication of ARS elements along yeast chromosome III. Mol. Cell. Biol. 9:4488–4494.
  • Roeder, G. S. 1997. Meiotic chromosomes: it takes two to tango. Genes Dev. 11:2600–2621.
  • Roeder, G. S. 1995. Sex and the single cell: meiosis in yeast. Proc. Natl. Acad. Sci. USA 92:10450–10456.
  • Ross, L. O., S. Rankin, M. F. Shuster, and J. Dawson 1996. Effects of homology, size and exchange on the meiotic segregation of model chromosomes in Saccharomyces cerevisiae. Genetics 142:79–89.
  • Sambrook, J., E. F. Fritsch, T. Maniatis 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Smith, K. N., and J. Nicolas 1998. Recombination at work for meiosis. Curr. Opin. Genet. Dev. 8:200–211.
  • Trelles-Sticken, E., J. Loidl, and J. Scherthan 1999. Bouquet formation in budding yeast: initiation of recombination is not required for meiotic telomere clustering. J. Cell Sci. 112:651–658.
  • Udvardy, A., and J. Schedl 1991. Chromatin structure, not DNA sequence specificity, is the primary determinant of topoisomerase II sites of action in vivo. Mol. Cell. Biol. 11:4973–4984.
  • Uhlmann, F., and J. Nasmyth 1998. Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8:1095–1101.
  • Wach, A. 1996. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12:259–265.
  • Watanabe, Y., and P. Nurse. 1999. Personal communication.
  • Weiss, K., and J. Simpson 1998. High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating type locus HMLα. Mol. Cell. Biol. 18:5392–5403.
  • Wu, T.-C., and J. Lichten 1995. Factors that affect the location and frequency of meiosis-induced double-strand breaks in Saccharomyces cerevisiae. Genetics 140:55–66.
  • Wu, T.-C., and J. Lichten 1994. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263:515–518.
  • Wu, T.-C., M. Lichten 1993. Position effects in meiotic recombination, p. 19–36. In G. Cooper, F. Haseltine, S. Heyner, J. Straus (ed.), Meiosis II: contemporary approaches to the study of meiosis. American Academy for the Advancement of Science, Washington, D.C.
  • Wu, T.-C., and M. Lichten. Unpublished data.
  • Xu, L., and J. Kleckner 1995. Sequence non-specific double-strand breaks and interhomolog interactions prior to double-strand break formation at a meiotic recombination hot spot in yeast. EMBO J. 14:5115–5128.
  • Zenvirth, D., T. Arbel, A. Sherman, M. Goldway, S. Klein, and J. Simchen 1992. Multiple sites for double-strand breaks in whole meiotic chromosomes of Saccharomyces cerevisiae. EMBO J. 11:3441–3447.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.