12
Views
41
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Homeoproteins CDP and SATB1 Interact: Potential for Tissue-Specific Regulation

, , &
Pages 4918-4926 | Received 11 Nov 1998, Accepted 29 Mar 1999, Published online: 28 Mar 2023

REFERENCES

  • Andres, V., B. Nadal-Ginard, and J. Mahdavi 1992. Clox, a mammalian homeobox gene related to Drosophila cut, encodes DNA-binding regulatory proteins differentially expressed during development. Development 116:321–334.
  • Aufiero, B., E. J. Neufeld, and J. Orkin 1994. Sequence-specific DNA binding of individual cut repeats of the human CCAAT displacement/cut homeodomain protein. Proc. Natl. Acad. Sci. USA 91:7757–7761.
  • Ball, J. K., H. Diggelmann, G. A. Dekaban, G. F. Grossi, R. Semmler, P. A. Waight, and J. Fletcher 1988. Alterations in the U3 region of the long terminal repeat of an infectious thymotropic type B retrovirus. J. Virol. 62:2985–2993.
  • Banan, M., I. C. Rojas, W. H. Lee, H. L. King, J. V. Harriss, R. Kobayashi, C. F. Webb, and J. Gottlieb 1997. Interaction of the nuclear matrix-associated region (MAR)-binding proteins, SATB1 and CDP/Cux, with a MAR element (L2a) in an upstream regulatory region of the mouse CD8α gene. J. Biol. Chem. 272:18440–18452.
  • Barberis, A., G. Superti-Furga, and J. Busslinger 1987. Mutually exclusive interaction of the CCAAT-binding factor and of a displacement protein with overlapping sequences of a histone gene promoter. Cell 50:347–359.
  • Beutner, U., E. Kraus, D. Kitamura, K. Rajewsky, and J. Huber 1994. B cells are essential for murine mammary tumor virus transmission, but not for presentation of endogenous superantigens. J. Exp. Med. 179:1457–1466.
  • Bode, J., Y. Kohwi, L. Dickinson, T. Joh, D. Klehr, C. Mielke, and J. Kohwi-Shigematsu 1992. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 255:195–197.
  • Bodmer, R., S. Barbel, S. Sheperd, J. W. Jack, L. Y. Jan, and J. Jan 1987. Transformation of sensory organs by mutations of the cut locus of D. melanogaster. Cell 51:293–307.
  • Bramblett, D., C.-L. L. Hsu, M. Lozano, K. Earnest, C. Fabritius, and J. Dudley 1995. A redundant nuclear protein binding site contributes to negative regulation of the mouse mammary tumor virus long terminal repeat. J. Virol. 69:7868–7876.
  • Brandt-Carlson, C., J. S. Butel, and J. Wheeler 1993. Phylogenetic and structural analyses of MMTV LTR ORF sequences of exogenous and endogenous origins. Virology 193:171–185.
  • Cleary, M. A., S. Stern, M. Tanaka, and J. Herr 1993. Differential positive control by Oct-1 and Oct-2: activation of a transcriptionally silent motif through Oct-1 and VP16 corecruitment. Genes Dev. 7:72–83.
  • Dickinson, L. A., C. D. Dickinson, and J. Kohwi-Shigematsu 1997. An atypical homeodomain in SATB1 promotes specific recognition of the key structural element in a matrix attachment region. J. Biol. Chem. 272:11463–11470.
  • Dickinson, L. A., T. Joh, Y. Kohwi, and J. Kohwi-Shigematsu 1992. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell 70:631–645.
  • Dignam, J. D., P. L. Martin, B. S. Shastry, and J. Roeder 1983. Eukaryotic gene transcription with purified components. Methods Enzymol. 101:582–598.
  • Dufort, D., and J. Nepveu 1994. The human Cut homeodomain protein represses transcription from the c-myc promoter. Mol. Cell. Biol. 14:4251–4257.
  • Forrester, W. C., C. van Genderen, T. Jenuwein, and J. Grosschedl 1994. Dependence of enhancer-mediated transcription of the immunoglobulin μ gene on nuclear matrix attachment regions. Science 265:1221–1225.
  • Golovkina, T. V., A. Chervonsky, J. P. Dudley, and J. Ross 1992. Transgenic mouse mammary tumor virus superantigen expression prevents viral infection. Cell 69:637–645.
  • Gregg, K., and J. Dudley. Unpublished data.
  • Harada, R., D. Dufort, C. Denis-Larose, and J. Nepveu 1994. Conserved cut repeats in the human cut homeodomain protein function as DNA binding domains. J. Biol. Chem. 269:2062–2067.
  • Haraguchi, S., R. A. Good, R. W. Engelman, S. Greene, and J. Day 1997. Prolactin, epidermal growth factor or transforming growth factor-α activate a mammary cell-specific enhancer in mouse mammary tumor virus-long terminal repeat. Mol. Cell. Endocrinol. 129:145–155.
  • Henrard, D., and J. Ross 1988. Endogenous mouse mammary tumor virus is expressed in several organs in addition to the lactating mammary gland. J. Virol. 62:3046–3049.
  • Higgy, N. A., H. A. Tarnasky, I. Valarche, A. Nepveu, and J. van der Hoorn 1997. Cux/CDP homeodomain protein binds to an enhancer in the rat c-mos locus and represses its activity. Biochim. Biophys. Acta 1351:313–324.
  • Hsu, C.-L. L., C. Fabritius, and J. Dudley 1988. Mouse mammary tumor virus proviruses in T-cell lymphomas lack a negative regulatory element in the long terminal repeat. J. Virol. 62:4644–4652.
  • King, L. B., and J. Corley 1990. Lipopolysaccharide and dexamethasone induce mouse mammary tumor proviral gene expression and differentiation in B lymphocytes through distinct regulatory pathways. Mol. Cell. Biol. 10:4211–4220.
  • Kohwi-Shigematsu, T., K. Maass, and J. Bode 1997. A thymocyte factor SATB1 suppresses transcription of stably integrated matrix-attachment region-linked reporter genes. Biochemistry 36:12005–12010.
  • Lai, J. S., and J. Herr 1992. Ethidium bromide provides a simple tool for identifying genuine DNA-independent protein associations. Proc. Natl. Acad. Sci. USA 89:6958–6962.
  • Lavallie, E. R., J. M. McCoy, D. B. Smith, P. Riggs 1994. Enzymatic and chemical cleavage of fusion proteins, p. 16.4.5–16.4.17. In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl (ed.), Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y.
  • Lee, W. T., O. Prakash, D. Klein, and J. Sarkar 1987. Structural alterations in the long terminal repeat of an acquired mouse mammary tumor virus provirus in a T-cell leukemia of DBA/2 mice. Virology 159:39–48.
  • Lefebvre, P., D. S. Berard, M. G. Cordingley, and J. Hager 1991. Two regions of the mouse mammary tumor virus long terminal repeat regulate the activity of its promoter in mammary cell lines. Mol. Cell. Biol. 11:2529–2537.
  • Lenardo, M. J., and J. Baltimore 1989. NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58:227–229.
  • Lievens, P. M., J. J. Donady, C. Tufarelli, and J. Neufeld 1995. Repressor activity of CCAAT displacement protein in HL-60 myeloid leukemia cells. J. Biol. Chem. 270:12745–12750.
  • Lievens, P. M., C. Tufarelli, J. J. Donady, A. Stagg, and J. Neufeld 1997. CASP, a novel, highly conserved alternative-splicing product of the CDP/cut/cux gene, lacks cut-repeat and homeo DNA-binding domains, and interacts with full-length CDP in vitro. Gene 197:73–81.
  • Liu, J., D. Bramblett, Q. Zhu, M. Lozano, R. Kobayashi, S. R. Ross, and J. Dudley 1997. The matrix attachment region-binding protein SATB1 participates in negative regulation of tissue-specific gene expression. Mol. Cell. Biol. 17:5275–5287.
  • Ludlow, C., R. Choy, and J. Blochlinger 1996. Functional analysis of Drosophila and mammalian cut proteins in flies. Dev. Biol. 178:149–159.
  • Mann, R. S., and J. Chan 1996. Extra specificity from extradenticle: the partnership between HOX and PBX/EXD homeodomain proteins. Trends Genet. 12:258–262.
  • Maxam, A. M., and J. Gilbert 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74:560–564.
  • Melcher, K., and J. Johnston 1995. GAL4 interacts with TATA-binding protein and coactivators. Mol. Cell. Biol. 15:2839–2848.
  • Michalides, R., and J. Wagenaar 1986. Site-specific rearrangements in the long terminal repeat of extra mouse mammary tumor proviruses in murine T-cell leukemias. Virology 154:76–84.
  • Mink, S., E. Härtig, P. Jennewein, W. Doppler, and J. Cato 1992. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor. Mol. Cell. Biol. 12:4906–4918.
  • Mok, E., T. V. Golovkina, and J. Ross 1992. A mouse mammary tumor virus mammary gland enhancer confers tissue-specific but not lactation-dependent expression in transgenic mice. J. Virol. 66:7529–7532.
  • Nakagomi, K., Y. Kohwi, L. A. Dickinson, and J. Kohwi-Shigematsu 1994. A novel DNA-binding motif in the nuclear matrix attachment DNA-binding protein SATB1. Mol. Cell. Biol. 14:1852–1860.
  • Neufeld, E. J., D. G. Skalnik, P. M. Lievens, and J. Orkin 1992. Human CCAAT displacement protein is homologous to the Drosophila homeoprotein, cut. Nat. Genet. 1:50–55.
  • Nusse, R., and J. Varmus 1982. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31:99–109.
  • Oliner, J. D., J. M. Andresen, S. K. Hansen, S. Zhou, and J. Tjian 1996. SREBP transcriptional activity is mediated through an interaction with the CREB-binding protein. Genes Dev. 10:2903–2911.
  • Peters, G., S. Brookes, R. Smith, and J. Dickson 1983. Tumorigenesis by mouse mammary tumor virus: evidence for a common region for provirus integration in mammary tumors. Cell 33:369–377.
  • Pinsonneault, J., B. Florence, H. Vaessin, and J. McGinnis 1997. A model for extradenticle function as a switch that changes HOX proteins from repressors to activators. EMBO J. 16:2032–2042.
  • Price, J., D. Turner, and J. Cepko 1987. Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc. Natl. Acad. Sci. USA 84:156–160.
  • Rieckhof, G. E., F. Casares, H. D. Ryoo, M. Abu-Shaar, and J. Mann 1997. Nuclear translocation of extradenticle requires homothorax, which encodes an extradenticle-related homeodomain protein. Cell 91:171–183.
  • Ross, S. R., C.-L. L. Hsu, Y. Choi, E. Mok, and J. Dudley 1990. Negative regulation in correct tissue-specific expression of mouse mammary tumor virus in transgenic mice. Mol. Cell. Biol. 10:5822–5829.
  • Scheuermann, R. H., and J. Chen 1989. A developmental-specific factor binds to suppressor sites flanking the immunoglobulin heavy-chain enhancer. Genes Dev. 3:1255–1266.
  • Sharma, S., L. B. King, and J. Corley 1988. Molecular events during B lymphocyte differentiation. Induction of endogenous mouse mammary tumor proviral envelope transcripts after B cell stimulation. J. Immunol. 141:2510–2518.
  • Smith, D. B. 1993. Purification of glutathione-S-transferase fusion proteins. Methods Mol. Cell. Biol. 4:220–229.
  • Superti-Furga, G., A. Barberis, G. Schaffner, and J. Busslinger 1988. The −117 mutation in Greek HPFH affects the binding of three nuclear factors to the CCAAT region of the γ-globin gene. EMBO J. 7:3099–3107.
  • Valarche, I., J. P. Tissier-Seta, M. R. Hirsch, S. Martinez, C. Goridis, and J. Brunet 1993. The mouse homeodomain protein Phox2 regulates Ncam promoter activity in concert with Cux/CDP and is a putative determinant of neurotransmitter phenotype. Development 119:881–896.
  • van Wijnen, A. J., M. F. van Gurp, M. C. de Ridder, C. Tufarelli, T. J. Last, M. Birnbaum, P. S. Vaughan, A. Giordano, W. Krek, E. J. Neufeld, J. L. Stein, and J. Stein 1996. CDP/cut is the DNA-binding subunit of histone gene transcription factor HiNF-D: a mechanism for gene regulation at the G1/S phase cell cycle transition point independent of transcription factor E2F. Proc. Natl. Acad. Sci. USA 93:11516–11521.
  • Wang, Z., A. Goldstein, R.-T. Zong, D. Lin, E. J. Neufeld, R. H. Scheuermann, and J. Tucker 1999. Cux/CDP homeoprotein is a component of NF-μNR and represses the immunoglobulin heavy chain introhic enhancer by antagonizing the Bright transcription activator. Mol. Cell. Biol. 19:284–295.
  • Weintraub, H. 1993. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75:1241–1244.
  • Yanagawa, S.-I., H. Tanaka, and J. Ishimoto 1991. Identification of a novel mammary cell line-specific enhancer element in the long terminal repeat of mouse mammary tumor virus, which interacts with its hormone-responsive element. J. Virol. 65:526–531.
  • Zappavigna, V., D. Sartori, and J. Mavilio 1994. Specificity of HOX protein function depends on DNA-protein and protein-protein interactions, both mediated by the homeo domain. Genes Dev. 8:732–744.
  • Zhang, H., G. Hu, H. Wang, P. Sciavolino, N. Iler, M. M. Shen, and J. Abate-Shen 1997. Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism. Mol. Cell. Biol. 17:2920–2932.
  • Zhu, Q., and J. Dudley. Unpublished data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.