13
Views
29
CrossRef citations to date
0
Altmetric
Gene Expression

Activation of RNA Polymerase III Transcription in Cells Transformed by Simian Virus 40

, , , , &
Pages 4927-4934 | Received 19 Feb 1999, Accepted 16 Apr 1999, Published online: 28 Mar 2023

REFERENCES

  • Alzuherri, H. M., and J. White 1998. Regulation of a TATA-binding protein-associated factor during cellular differentiation. J. Biol. Chem. 273:17166–17171.
  • Aufiero, B., and J. Schneider 1990. The hepatitis B virus X-gene product trans-activates both RNA polymerase II and III promoters. EMBO J. 9:497–504.
  • Boulanger, P. A., S. K. Yoshinaga, and J. Berk 1987. DNA-binding properties and characterization of human transcription factor TFIIIC2. J. Biol. Chem. 262:15098–15105.
  • Cairns, C. A., and J. White 1998. p53 is a general repressor of RNA polymerase III transcription. EMBO J. 17:3112–3123.
  • Carey, M. F., K. Singh, M. Botchan, and J. Cozzarelli 1986. Induction of specific transcription by RNA polymerase III in transformed cells. Mol. Cell. Biol. 6:3068–3076.
  • Chesnokov, I., W.-M. Chu, M. R. Botchan, and J. Schmid 1996. p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner. Mol. Cell. Biol. 16:7084–7088.
  • Chu, W.-M., Z. Wang, R. G. Roeder, and J. Schmid 1997. RNA polymerase III transcription repressed by Rb through its interactions with TFIIIB and TFIIIC2. J. Biol. Chem. 272:14755–14761.
  • Clark, M. E., and J. Dasgupta 1990. A transcriptionally active form of TFIIIC is modified in poliovirus-infected HeLa cells. Mol. Cell. Biol. 10:5106–5113.
  • Damania, B., R. Mital, and J. Alwine 1998. Simian virus 40 large T antigen interacts with human TFIIB-related factor and small nuclear RNA-activating protein complex for transcriptional activation of TATA-containing polymerase III promoters. Mol. Cell. Biol. 18:1331–1338.
  • Dean, N., and J. Berk 1988. Ordering promoter binding of class III transcription factors TFIIIC1 and TFIIIC2. Mol. Cell. Biol. 8:3017–3025.
  • DeCaprio, J. A., J. W. Ludlow, J. Figge, J.-Y. Shew, C.-M. Huang, W.-H. Lee, E. Marsilio, E. Paucha, and J. Livingston 1988. SV40 large tumour antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54:275–283.
  • Dyson, N., P. M. Howley, K. Munger, and J. Harlow 1989. The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934–937.
  • Ewen, M. E., J. W. Ludlow, E. Marsilio, J. A. DeCaprio, R. C. Millikan, S. H. Cheng, E. Paucha, and J. Livingston 1989. An N-terminal transformation-governing sequence of SV40 large T antigen contributes to the binding of both p110Rb and a second cellular protein, p120. Cell 58:257–267.
  • Gottesfeld, J. M., D. L. Johnson, and J. Nyborg 1996. Transcriptional activation of RNA polymerase III-dependent genes by the human T-cell leukemia virus type 1 Tax protein. Mol. Cell. Biol. 16:1777–1785.
  • Hoeffler, W. K., R. Kovelman, and J. Roeder 1988. Activation of transcription factor IIIC by the adenovirus E1A protein. Cell 53:907–920.
  • Hoeffler, W. K., and J. Roeder 1985. Enhancement of RNA polymerase III transcription by the E1A gene product of adenovirus. Cell 41:955–963.
  • Kovelman, R., and J. Roeder 1992. Purification and characterization of two forms of human transcription factor IIIC. J. Biol. Chem. 267:24446–24456.
  • Kundu, T. K., Z. Wang, and J. Roeder 1999. Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity. Mol. Cell. Biol. 19:1605–1615.
  • Kwee, L., R. Lucito, B. Aufiero, and J. Schneider 1992. Alternate translation initiation on hepatitis B virus X mRNA produces multiple polypeptides that differentially transactivate class II and III promoters. J. Virol. 66:4382–4389.
  • Lagna, G., R. Kovelman, J. Sukegawa, and J. Roeder 1994. Cloning and characterization of an evolutionarily divergent DNA-binding subunit of mammalian TFIIIC. Mol. Cell. Biol. 14:3053–3064.
  • Lam, E. W.-F., J. D. H. Morris, R. Davies, T. Crook, R. J. Watson, and J. Vousden 1994. HPV16 E7 oncoprotein deregulates B-myb expression: correlation with targeting of p107/E2F complexes. EMBO J. 13:871–878.
  • Lane, D. P., and J. Crawford 1979. T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263.
  • Larminie, C. G. C., H. M. Alzuherri, C. A. Cairns, A. McLees, and J. White 1998. Transcription by RNA polymerases I and III: a potential link between cell growth, protein synthesis and the retinoblastoma protein. J. Mol. Med. 76:94–103.
  • Larminie, C. G. C., C. A. Cairns, R. Mital, K. Martin, T. Kouzarides, S. P. Jackson, and J. White 1997. Mechanistic analysis of RNA polymerase III regulation by the retinoblastoma protein. EMBO J. 16:2061–2071.
  • Larminie, C. G. C., and R. J. White. Unpublished observations.
  • L’Etoile, N. D., M. L. Fahnestock, Y. Shen, R. Aebersold, and J. Bertc 1994. Human transcription factor IIIC box B binding subunit. Proc. Natl. Acad. Sci. USA 91:1652–1656.
  • Lobo, S. M., M. Tanaka, M. L. Sullivan, and J. Hernandez 1992. A TBP complex essential for transcription from TATA-less but not TATA-containing RNA polymerase III promoters is part of the TFIIIB fraction. Cell 71:1029–1040.
  • Loeken, M., I. Bikel, D. M. Livingston, and J. Brady 1988. Transactivation of RNA polymerase II and III promoters by SV40 small t antigen. Cell 55:1171–1177.
  • Manley, J. L., A. Fire, A. Cano, P. A. Sharp, and J. Gefter 1980. DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract. Proc. Natl. Acad. Sci. USA 77:3855–3859.
  • Mital, R., R. Kobayashi, and J. Hernandez 1996. RNA polymerase III transcription from the human U6 and adenovirus type 2 VAI promoters has different requirements for human BRF, a subunit of human TFIIIB. Mol. Cell. Biol. 16:7031–7042.
  • Moran, E. 1988. A region of SV40 large T antigen can substitute for a transforming domain of the adenovirus E1A products. Nature 334:168–170.
  • Munger, K., B. A. Werness, N. Dyson, W. C. Phelps, E. Harlow, and J. Howley 1989. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumour suppressor gene product. EMBO J. 8:4099–4105.
  • Nasmyth, K. 1996. Another role rolls in. Nature 382:28–29.
  • Piras, G., J. Dittmer, M. F. Radonovich, and J. Brady 1996. Human T-cell leukaemia virus type I Tax protein transactivates RNA polymerase III promoter in vitro and in vivo. J. Biol. Chem. 271:20501–20506.
  • Rigby, P. W. J., W. Chia, C. E. Clayton, and J. Lovett 1980. The structure and expression of the integrated viral DNA in mouse cells transformed by Simian virus 40. Proc. R. Soc. Lond. Ser. B 210:437–450.
  • Scott, M. R. D., K.-H. Westphal, and J. Rigby 1983. Activation of mouse genes in transformed cells. Cell 34:557–567.
  • Segall, J., T. Matsui, and J. Roeder 1980. Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III. J. Biol. Chem. 255:11986–11991.
  • Shen, Y., M. Igo, P. Yalamanchili, A. J. Berk, and J. Dasgupta 1996. DNA binding domain and subunit interactions of transcription factor IIIC revealed by dissection with poliovirus 3C protease. Mol. Cell. Biol. 16:4163–4171.
  • Shew, J.-Y., B. T.-Y. Lin, P.-L. Chen, B. Y. Tseng, T. L. Yang-Feng, and J. Lee 1990. C-terminal truncation of the retinoblastoma gene product leads to functional inactivation. Proc. Natl. Acad. Sci. USA 87:6–10.
  • Simmen, K. A., J. Bernues, J. D. Lewis, and J. Mattaj 1992. Cofractionation of the TATA-binding protein with the RNA polymerase III transcription factor TFIIIB. Nucleic Acids Res. 20:5889–5898.
  • Simmen, K. A., J. Bernues, H. D. Parry, H. G. Stunnenberg, A. Berkenstam, B. Cavallini, J. M. Egly, and J. Mattaj 1991. TFIID is required for in vitro transcription of the human U6 gene by RNA polymerase III. EMBO J. 10:1853–1862.
  • Singh, K., M. Carey, S. Saragosti, and J. Botchan 1985. Expression of enhanced levels of small RNA polymerase III transcripts encoded by the B2 repeats in simian virus 40-transformed mouse cells. Nature 314:553–556.
  • Sinn, E., Z. Wang, R. Kovelman, and J. Roeder 1995. Cloning and characterization of a TFIIIC2 subunit (TFIIICβ) whose presence correlates with activation of RNA polymerase III-mediated transcription by adenovirus E1A expression and serum factors. Genes Dev. 9:675–685.
  • Sutcliffe, J. E., and R. J. White. Unpublished observations.
  • Taggart, A. K. P., T. S. Fisher, and J. Pugh 1992. The TATA-binding protein and associated factors are components of pol III transcription factor TFIIIB. Cell 71:1015–1028.
  • Teichmann, M., G. Dieci, J. Huet, J. Ruth, A. Sentenac, and J. Seifart 1997. Functional interchangeability of TFIIIB components from yeast and human cells in vitro. EMBO J. 16:4708–4716.
  • Teichmann, M., and J. Seifart 1995. Physical separation of two different forms of human TFIIIB active in the transcription of the U6 or the VAI gene in vitro. EMBO J. 14:5974–5983.
  • Vousden, K. H. 1995. Regulation of the cell cycle by viral oncoproteins. Semin. Cancer Biol. 6:109–116.
  • Wang, H.-D., A. Trivedi, and J. Johnson 1997. Hepatitis B virus X protein induces RNA polymerase III-dependent gene transcription and increases cellular TATA-binding protein by activating the Ras signalling pathway. Mol. Cell. Biol. 17:6838–6846.
  • Wang, H.-D., C.-H. Yuh, C. V. Dang, and J. Johnson 1995. The hepatitis B virus X protein increases the cellular level of TATA-binding protein, which mediates transactivation of RNA polymerase III genes. Mol. Cell. Biol. 15:6720–6728.
  • Wang, Z., and J. Roeder 1995. Structure and function of a human transcription factor TFIIIB subunit that is evolutionarily conserved and contains both TFIIB- and high-mobility-group protein 2-related domains. Proc. Natl. Acad. Sci. USA 92:7026–7030.
  • White, R. J. 1997. Regulation of RNA polymerases I and III by the retinoblastoma protein: a mechanism for growth control? Trends Biochem. Sci. 22:77–80.
  • White, R. J. 1998. RNA polymerase III transcription. Springer-Verlag, New York, N.Y.
  • White, R. J. 1998. Transcription factor IIIB: an important determinant of biosynthetic capacity that is targeted by tumour suppressors and transforming proteins. Int. J. Oncol. 12:741–748.
  • White, R. J., T. M. Gottlieb, C. S. Downes, and J. Jackson 1995. Cell cycle regulation of RNA polymerase III transcription. Mol. Cell. Biol. 15:6653–6662.
  • White, R. J., T. M. Gottlieb, C. S. Downes, and J. Jackson 1995. Mitotic regulation of a TATA-binding-protein-containing complex. Mol. Cell. Biol. 15:1983–1992.
  • White, R. J., and J. Jackson 1992. Mechanism of TATA-binding protein recruitment to a TATA-less class III promoter. Cell 71:1041–1053.
  • White, R. J., S. P. Jackson, and J. Rigby 1992. A role for the TATA-box-binding protein component of the transcription factor IID complex as a general RNA polymerase III transcription factor. Proc. Natl. Acad. Sci. USA 89:1949–1953.
  • White, R. J., D. Stott, and J. Rigby 1989. Regulation of RNA polymerase III transcription in response to F9 embryonal carcinoma stem cell differentiation. Cell 59:1081–1092.
  • White, R. J., D. Stott, and J. Rigby 1990. Regulation of RNA polymerase III transcription in response to Simian virus 40 transformation. EMBO J. 9:3713–3721.
  • White, R. J., D. Trouche, K. Martin, S. P. Jackson, and J. Kouzarides 1996. Repression of RNA polymerase III transcription by the retinoblastoma protein. Nature 382:88–90.
  • Yoshinaga, S., N. Dean, M. Han, and J. Berk 1986. Adenovirus stimulation of transcription by RNA polymerase III: evidence for an E1A-dependent increase in transcription factor IIIC concentration. EMBO J. 5:343–354.
  • Yoshinaga, S. K., N. D. L’Etoile, and J. Berk 1989. Purification and characterization of transcription factor IIIC2. J. Biol. Chem. 264:10726–10731.
  • Zalvide, J., and J. DeCaprio 1995. Role of pRb-related proteins in simian virus 40 large-T-antigen-mediated transformation. Mol. Cell. Biol. 15:5800–5810.
  • Zhu, J., P. W. Rice, L. Gorsch, M. Abate, and J. Cole 1992. Transformation of a continuous rat embryo fibroblast cell line requires three separate domains of simian virus 40 large T antigen. J. Virol. 66:2780–2791.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.