87
Views
85
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Overproduction of Human Myt1 Kinase Induces a G2 Cell Cycle Delay by Interfering with the Intracellular Trafficking of Cdc2-Cyclin B1 Complexes

, , &
Pages 5113-5123 | Received 26 Jan 1999, Accepted 05 Apr 1999, Published online: 28 Mar 2023

REFERENCES

  • Adams, P. D., W. R. Sellers, S. K. Sharma, A. D. Wu, C. M. Nalin, and J. Kaelin 1996. Identification of a cyclin-cdk2 recognition motif present in substrates and p21-like cyclin-dependent kinase inhibitors. Mol. Cell. Biol. 16:6623–6633.
  • Atherton-Fessler, S., G. Hannig, and J. Piwnica-Worms 1993. Reversible tyrosine phosphorylation and cell cycle control. Semin. Cell Biol. 4:433–442.
  • Atherton-Fessler, S., F. Liu, B. Gabrielli, M. S. Lee, C.-Y. Peng, and J. Piwnica-Worms 1994. Cell cycle regulation of the p34cdc2 inhibitory kinases. Mol. Biol. Cell 5:989–1001.
  • Atherton-Fessler, S., L. L. Parker, R. L. Geahlen, and J. Piwnica-Worms 1993. Mechanism of p34cdc2 regulation. Mol. Cell. Biol. 13:1675–1685.
  • Bailly, E., J. Pines, T. Hunter, and J. Bornens 1992. Cytoplasmic accumulation of cyclin B1 in human cells: association with a detergent-resistent compartment and with the centrosome. J. Cell Sci. 101:529–545.
  • Baldin, V., and J. Ducommun 1995. Subcellular localisation of human wee1 kinase is regulated during the cell cycle. J. Cell Sci. 108:2425–2432.
  • Becker, T. C., R. J. Noel, W. S. Coats, A. M. Gomez-Foix, T. Alam, R. D. Gerard, C. B. Newgard 1994. Use of recombinant adenovirus for metabolic engineering of mammalian cells, p. 161–189. In M. G. Roth (ed.), Methods in cell biology. Academic Press, Inc., New York, N.Y.
  • Blasina, A., E. S. Paegle, and J. McGowan 1997. The role of inhibitory phosphorylation of Cdc2 following DNA replication block and radiation-induced damage in human cells. Mol. Biol. Cell 8:1013–1023.
  • Booher, R. N., P. S. Holman, and J. Fattaey 1997. Human Myt1 is a cell cycle regulated kinase that inhibits Cdc2 but not Cdk2 activity. J. Biol. Chem. 272:22300–22306.
  • Chen, J., P. Saha, S. Kornbluth, B. D. Dynlacht, and J. Dutta 1996. Cyclin-binding motifs are essential for the function of p21Cip1. Mol. Cell. Biol. 16:4673–4682.
  • Cliby, W. A., C. J. Roberts, K. A. Cimprich, C. M. Stringer, J. R. Lamb, S. L. Schreiber, and J. Friend 1998. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 17:159–169.
  • Draetta, G., and J. Beach 1988. Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell 54:17–26.
  • Draetta, G., H. Piwnica-Worms, D. Morrison, B. Druker, T. Roberts, and J. Beach 1988. Human cdc2 protein kinase is a major cell-cycle regulated tyrosine kinase substrate. Nature 336:738–744.
  • Dunphy, W. G., and J. Kumagai 1991. The cdc25 protein contains an intrinsic phosphatase activity. Cell 67:189–196.
  • Featherstone, C., and J. Russell 1991. Fission yeast p107wee1 mitotic inhibitor is a tyrosine/serine kinase. Nature 349:808–811.
  • Gallant, P., and J. Nigg 1992. Cyclin B2 undergoes cell cycle-dependent nuclear translocation and, when expressed as a non-destructible mutant, causes mitotic arrest in HeLa cells. J. Cell Biol. 117:213–224.
  • Gautier, J., M. J. Solomon, R. N. Booher, J. F. Bazan, and J. Kirschner 1991. cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67:197–211.
  • Gould, K. L., S. Moreno, D. J. Owen, S. Sazer, and J. Nurse 1991. Phosphorylation at Thr 167 is required for Schizosaccharomyces pombe p34cdc2 function. EMBO J. 10:3297–3309.
  • Gould, K. L., and J. Nurse 1989. Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 342:39–45.
  • Gulbis, J. M., Z. Kelman, J. Hurwitz, M. O’Donnell, and J. Kuriyan 1996. Structure of the C-terminal region of p21WAF1/CIP1 complexed with human PCNA. Cell 87:297–306.
  • Hagting, A., C. Karlsson, P. Clute, M. Jackman, and J. Pines 1998. MPF localization is controlled by nuclear export. EMBO J. 17:4127–4138.
  • He, T.-C., S. Zhou, L. T. DaCosta, J. Yu, K. W. Kinzler, and J. Vogelstein 1998. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95:2509–2514.
  • Heald, R., M. McLoughlin, and J. McKeon 1993. Human Wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell 74:463–474.
  • Hoffmann, I., P. R. Clarke, M. J. Marcote, E. Karsenti, and J. Draetta 1993. Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 12:53–63.
  • Honda, R., Y. Ohba, and J. Yasuda 1992. The cell cycle regulator, human p50wee1, is a tyrosine kinase and not a serine/tyrosine kinase. Biochem. Biophys. Res. Commun. 186:1333–1338.
  • Igarashi, M., A. Nagata, S. Jinno, K. Suto, and J. Okayama 1991. Wee1+-like gene in human cells. Nature 353:80–83.
  • Izumi, T., D. H. Walker, and J. Maller 1992. Periodic changes in phosphorylation of the Xenopus cdc25 phosphatase regulate its activity. Mol. Biol. Cell 3:927–939.
  • Jin, P., Y. Gu, and J. Morgan 1996. Role of inhibitory Cdc2 phosphorylation in radiation-induced G2 arrest in human cells. J. Cell Biol. 134:963–970.
  • Jin, P., S. Hardy, and J. Morgan 1998. Nuclear localization of cyclin B1 controls mitotic entry after DNA damage. J. Cell Biol. 141:875–885.
  • Kornbluth, S., B. Sebastian, T. Hunter, and J. Newport 1994. Membrane localization of the kinase which phosphorylates p34cdc2 on threonine 14. Mol. Biol. Cell 5:273–282.
  • Krek, W., and J. Nigg 1991. Differential phosphorylation of vertebrate p34cdc2 kinase at the G1/S and G2/M transitions of the cell cycle: identification of major phosphorylation sites. EMBO J. 10:305–316.
  • Krek, W., and J. Nigg 1991. Mutations of p34cdc2 phosphorylation sites induce premature mitotic events in HeLa cells: evidence for a double block to p34cdc2 kinase activation in vertebrates. EMBO J. 10:3331–3341.
  • Kudo, N., S. Khochbin, K. Nishi, K. Kitano, M. Yanagida, M. Yoshida, and J. Horinouchi 1997. Molecular cloning and cell cycle-dependent expression of mammalian CRM1, a protein involved in nuclear export of proteins. J. Biol. Chem. 272:29742–29751.
  • Kumagai, A., and J. Dunphy 1992. Regulation of the cdc25 protein during the cell cycle in Xenopus extracts. Cell 70:139–151.
  • Kumagai, A., and J. Dunphy 1995. Control of the cdc2/cyclin B complex in Xenopus egg extracts arrested at a G2/M checkpoint with DNA synthesis inhibitors. Mol. Biol. Cell 6:199–213.
  • Lee, M. S., T. Enoch, and J. Piwnica-Worms 1994. Mik1+ encodes a tyrosine kinase that phosphorylates p34cdc2 on tyrosine 15. J. Biol. Chem. 269:30530–30537.
  • Lee, M. S., S. Ogg, M. Xu, L. L. Parker, D. J. Donoghue, J. L. Maller, and J. Piwnica-Worms 1992. cdc25+ encodes a protein phosphatase that dephosphorylates p34cdc2. Mol. Biol. Cell 3:73–84.
  • Lee, T. H., and J. Kirschner 1996. An inhibitor of p34cdc2/cyclin B that regulates the G2/M transition in Xenopus extracts. Proc. Natl. Acad. Sci. USA 93:352–356.
  • Li, J., A. N. Meyer, and J. Donoghue 1995. Requirement for phosphorylation of cyclin B1 for Xenopus oocyte maturation. Mol. Biol. Cell 6:1111–1124.
  • Liu, F., J. J. Stanton, Z. Wu, and J. Piwnica-Worms 1997. The human Myt1 kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex. Mol. Cell. Biol. 17:571–583.
  • Lundgren, K., N. Walworth, R. Booher, M. Dembski, M. Kirschner, and J. Beach 1991. mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell 64:1111–1122.
  • McGowan, C. H., and J. Russell 1993. Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr 15. EMBO J. 12:75–85.
  • McGowan, C. H., and J. Russell 1995. Cell cycle regulation of human WEE1. EMBO J. 14:2166–2175.
  • Morgan, D. O. 1997. Cyclin dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Deve. Biol. 13:261–291.
  • Morla, A. O., G. Draetta, D. Beach, and J. Wang 1989. Reversible tyrosine phosphorylation of cdc2: dephosphorylation accompanies activation during entry into mitosis. Cell 58:193–203.
  • Mueller, P. R., T. R. Coleman, A. Kumagai, and J. Dunphy 1995. Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science 270:86–90.
  • Nishi, K., M. Yoshida, D. Fujiwara, M. Nishikawa, S. Horinouchi, and J. Beppu 1994. Leptomycin B targets a regulatory cascade or crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J. Biol. Chem. 9:6320–6324.
  • Norbury, C., J. Blow, and J. Nurse 1991. Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates. EMBO J. 10:3321–3329.
  • Ookata, K., S.-I. Hisanaga, T. Okano, K. Tachibana, and J. Kishimoto 1992. Relocation and distinct subcellular localization of p34cdc2-cyclin B complex at meiosis reinitiation in starfish oocytes. EMBO J. 11:1763–1772.
  • Palmer, A., A. Gavin, and J. Nebreda 1998. A link between MAP kinase and p34cdc2/cyclin B during oocyte maturation: p90rsk phosphorylates and inactivates the p34cdc2 inhibitory kinase Myt1. EMBO J. 17:5037–5047.
  • Parker, L. L., S. Atherton-Fessler, M. S. Lee, S. Ogg, F. L. Falk, K. I. Swenson, and J. Piwnica-Worms 1991. Cyclin promotes the tyrosine phosphorylation of p34cdc2 in a wee1+ dependent manner. EMBO J. 10:1255–1263.
  • Parker, L. L., S. Atherton-Fessler, and J. Piwnica-Worms 1992. p107wee1 is a dual specificity kinase that phosphorylates p34cdc2 on tyrosine 15. Proc. Natl. Acad. Sci. USA 89:2917–2921.
  • Parker, L. L., and J. Piwnica-Worms 1992. Inactivation of the p34cdc2-cyclin B complex by the human wee1 tyrosine kinase. Science 257:1955–1957.
  • Parker, L. L., P. J. Sylvestre, M. J. Byrnes III, F. Liu, and J. Piwnica-Worms 1995. Identification of a 95-kDa WEE1-like tyrosine kinase in HeLa cells. Proc. Natl. Acad. Sci. USA 92:9638–9642.
  • Pines, J., and J. Hunter 1991. Human cyclin A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J. Cell Biol. 115:1–17.
  • Pines, J., and J. Hunter 1994. The differential localization of human cyclin A and B is due to a cytoplasmic retention signal in cyclin B. EMBO J. 13:3772–3781.
  • Russell, P., and J. Nurse 1987. Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell 49:559–567.
  • Russo, A. A., P. D. Jeffrey, A. K. Patten, J. Massague, and J. Pavletich 1996. Crystal structure of the p27kip1 cyclin dependent kinase inhibitor bound to the cyclin A-cdk2 complex. Nature 382:325–331.
  • Saha, P., Q. Eichbaum, E. D. Silberman, B. J. Mayer, and J. Dutta 1997. p21CIP1 and Cdc25A: competition between an inhibitor and an activator of cyclin-dependent kinases. Mol. Cell. Biol. 17:4338–4345.
  • Schulman, B. A., D. L. Lindstrom, and J. Harlow 1998. Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc. Natl. Acad. Sci. USA 95:10453–10458.
  • Sebastian, B., A. Kakizuka, and J. Hunter 1993. Cdc25M2 activation of cyclin-dependent kinases by dephosphorylation of threonine-14 and tyrosine-15. Proc. Natl. Acad. Sci. USA 90:3521–3524.
  • Solomon, M. J., T. Lee, and J. Kirschner 1992. Role of phosphorylation in p34cdc2 activation: identification of an activating kinase. Mol. Biol. Cell 3:13–27.
  • Strausfeld, U., J. C. Labbe, D. Fesquet, J. C. Cavadore, A. Picard, K. Sadhu, P. Russell, and J. Doree 1991. Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human cdc25 protein. Nature 351:242–245.
  • Toyoshima, F., T. Moriguchi, A. Wada, M. Fukuda, and J. Nishida 1998. Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. EMBO J. 17:2728–2735.
  • Watanabe, N., M. Broome, and J. Hunter 1995. Regulation of the human WEE1Hu CDK tyrosine 15-kinase during the cell cycle. EMBO J. 14:1878–1891.
  • Yang, J., E. S. G. Bardes, J. D. Moore, J. Brennan, M. A. Powers, and J. Kornbluth 1998. Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev. 12:2131–2143.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.