77
Views
313
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Sister Chromatid Exchanges Are Mediated by Homologous Recombination in Vertebrate Cells

, , , , &
Pages 5166-5169 | Received 26 Jan 1999, Accepted 30 Mar 1999, Published online: 28 Mar 2023

REFERENCES

  • Bezzubova, O. Y., A. Silbergleit, Y. Yamaguchi-Iwai, S. Takeda, and J. Buerstedde 1997. Reduced X-ray resistance and homologous recombination frequencies in a RAD54−/− mutant of the chicken DT40 cell line. Cell 89:185–193.
  • Bierne, H., and J. Michel 1994. When replication forks stop. Mol. Microbiol. 13:17–23.
  • Buerstedde, J. M., and J. Takeda 1991. Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 67:179–188.
  • Cleaver, J. E. 1981. Correlations between sister chromatid exchange frequencies and replicon sizes. A model for the mechanism of SCE production. Exp. Cell Res. 136:27–30.
  • Crossen, P. E., M. E. Drets, F. E. Arrighi, and J. Johnston 1977. Analysis of the frequency and distribution of sister chromatid exchanges in cultured human lymphocytes. Hum. Genet. 35:345–352.
  • Engelward, B. P., J. M. Allan, A. J. Dreslin, J. D. Kelly, M. M. Wu, B. Gold, and J. Samson 1998. A chemical and genetic approach together define the biological consequences of 3-methyladenine lesions in the mammalian genome. J. Biol. Chem. 273:5412–5418.
  • Essers, J., R. W. Hendriks, S. M. A. Swagemakers, C. Troelstra, J. de Wit, D. Bootsma, J. H. J. Hoeijmakers, and J. Kanaar 1997. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell 89:195–204.
  • Galloway, S. M., and J. Evans 1975. Sister chromatid exchange in human chromosomes from normal individuals and patients with ataxia telangiectasia. Cytogenet. Cell Genet. 15:17–29.
  • German, J., N. A. Ellis 1998. Bloom syndrome, p. 301–315. In B. Vogelstein, K. Kinzler (ed.), The genetic basis of human cancer. McGraw-Hill, New York, N.Y.
  • Hagmar, L., S. Bonassi, U. Stromberg, A. Brogger, L. E. Knudsen, H. Norppa, and J. Reuterwall 1998. Chromosomal aberrations in lymphocytes predict human cancer: a report from the European Study Group on Cytogenetic Biomarkers and Health (ESCH). Cancer Res. 58:4117–4121.
  • Ishii, Y., and J. Bender 1980. Effects of inhibitors of DNA synthesis on spontaneous and ultraviolet light-induced sister-chromatid exchanges in Chinese hamster cells. Mutat. Res. 79:19–32.
  • Kadyk, L. C., and J. Hartwell 1993. Replication-dependent sister chromatid recombination in rad1 mutants of Saccharomyces cerevisiae. Genetics 133:469–487.
  • Kato, H. 1974. Possible role of DNA synthesis in formation of sister chromatid exchanges. Nature 252:739–741.
  • Kuzminov, A. 1996. Recombinational repair in eukaryotes, p. 185–203. In A. Kuzminov (ed.), Recombinational repair of DNA damage. Springer-Verlag, New York, N.Y.
  • Li, G. C., H. Ouyang, X. Li, H. Nagasawa, J. B. Little, D. J. Chen, C. C. Ling, Z. Fuks, and J. Cordon-Cardo 1998. Ku70: a candidate tumor suppressor gene for murine T cell lymphoma. Mol. Cell 2:1–8.
  • Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362:709–715.
  • Michel, B., S. D. Ehrlich, and J. Uzest 1997. DNA double-strand breaks caused by replication arrest. EMBO J. 16:430–438.
  • Natarajan, A. T., A. A. van Zeeland, E. A. Verdegaal-Immerzeel, and J. Filon 1980. Studies on the influence of photoreactivation on the frequencies of UV-induced chromosomal aberrations, sister-chromatid exchanges and pyrimidine dimers in chicken embryonic fibroblasts. Mutat. Res. 69:307–317.
  • Painter, R. B. 1980. A replication model for sister-chromatid exchange. Mutat. Res. 70:337–341.
  • Sasaki, M. S. 1980. Chromosome aberration formation and sister chromatid exchange in relation to DNA repair in human cells, p. 285–313. In W. M. Generoso, M. D. Shelby, F. J. De Serres (ed.), DNA repair and mutagenesis in eukaryotes. Plenum Press, New York, N.Y.
  • Schiestl, R. H. 1989. Nonmutagenic carcinogens induce intrachromosomal recombination in yeast. Nature 337:285–288.
  • Seigneur, M., V. Bidnenko, S. D. Ehrlich, and J. Michel 1998. RuvAB acts at arrested replication forks. Cell 95:419–430.
  • Shinohara, A., H. Ogawa, Y. Matsuda, N. Ushio, K. Ikeo, and J. Ogawa 1993. Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nat. Genet. 4:239–243.
  • Sonoda, E., M. S. Sasaki, J.-M. Buerstedde, O. Bezzubova, A. Shinohara, H. Ogawa, M. Takata, Y. Yamaguchi-Iwai, and J. Takeda 1998. Rad51 deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J. 17:598–608.
  • Takata, M., M. S. Sasaki, E. Sonoda, C. Morrison, M. Hashimoto, H. Utsumi, Y. Yamaguchi-Iwai, A. Shinohara, and J. Takeda 1998. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17:5497–5508.
  • Tashiro, S., N. Kotomura, A. Shinohara, K. Tanaka, K. Ueda, and J. Kamada 1996. S phase specific formation of the human Rad51 protein nuclear foci in lymphocytes. Oncogene 12:2165–2170.
  • Taylor, J. H. 1958. Sister chromatid exchanges in tritium-labeled chromosomes. Genetics 43:515–529.
  • Thompson, L. H., K. W. Brookman, N. J. Jones, S. A. Allen, and J. Carrano 1990. Molecular cloning of the human XRCC1 gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol. Cell. Biol. 10:6160–6171.
  • Wang, Z. Q., L. Stingl, C. Morrison, M. Jantsch, M. Los, K. Schulze-Osthoff, and J. Wagner 1997. PARP is important for genomic stability but dispensable in apoptosis. Genes Dev. 11:2347–2358.
  • Weaver, D. T. 1995. What to do at an end: DNA double-strand-break repair. Trends Genet. 11:388–392.
  • Wilmer, J. L., O. M. Colvin, and J. Bloom 1992. Cytogenetic mechanisms in the selective toxicity of cyclophosphamide analogs and metabolites towards avian embryonic B lymphocytes in vivo. Mutat. Res. 268:115–130.
  • Wolff, S., J. Bodycote, and J. Painter 1974. Sister chromatid exchanges induced in Chinese hamster cells by UV irradiation of different stages of the cell cycle: the necessity for cells to pass through S. Mutat. Res. 25:73–81.
  • Zou, H., and J. Rothstein 1997. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell 90:87–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.